
 

EERI 
Economics and Econometrics Research Institute 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EERI Research Paper Series No 11/2017 

ISSN: 2031-4892 

 

 
 

 

 

 

 

 

 

 

 

 

 

Copyright © 2017 by Varun Agiwal, Jitendra Kumar and Sumit Kumar Sharma 

 

Testing of Parameter’s Instability in a Balanced Panel: 

An Application to Real Effective Exchange Rate for SAARC 

Countries 

 

 

Varun Agiwal, Jitendra Kumar and Sumit Kumar Sharma 
 

EERI 

Economics and Econometrics Research Institute 

Avenue Louise 

1050 Brussels 

Belgium 

 

Tel: +32 2271 9482 

Fax: +32 2271 9480 

www.eeri.eu 



1 
 

Testing of Parameter’s Instability in a Balanced Panel: An Application to Real 

Effective Exchange Rate for SAARC Countries 

 

By 

 

Varun Agiwal, Jitendra Kumar* and Sumit Kumar Sharma 

Department of Statistics, Central University of Rajasthan, Bandersindri, Ajmer, India 

Email: varunagiwal.stats@gmail.com; vjitendrav@gmail.com; sumitkmaharshi@gmail.com   

 

                                                                 Abstract  

Present paper considers structural break in panel AR(1) model which allows instability in 

mean, variance and autoregressive coefficient. This model is extension of univariate model 

proposed by Meligkotsiduo et al. (2004) and review of existing panel data time series model 

considering break studied by Levin et al. (2002), Pesaran (2004), Bai (2010), Liu et al. 

(2011), Wachter and Tzavalis (2012). Paper dealt the identification of structural break by 

comparing the posterior probability of all possible models like break on all three parameters, 

only two parameters, one parameter and there is no break. A simulation study is carried out 

to validate the derived theorems. An Empirical analysis on Real Exchange Rate of India and 

its neighboring countries (SAARC countries including China) are also carried out. The 

present study is correctly identifying the common break on 1991 which happened due to 

second gulf war and international debt crisis. 
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1. Introduction 

An economy development of a nation mainly depends upon various factors such as income, 

interest rate, GDP, exchange rate, unemployment rate, production, inflation etc. Sometimes 

financial, political, environmental conditions may down the economy growth which can seem in 

terms of economic crisis, change of a policy, technology change etc. These changes may be 

analyzed with the help of structural break model in time series as well as economics. The 

existing research and literature on structural change at various levels had been analyzed in 

several applications in time series and econometric data such as gross domestic product (Wang 

and Zivot 2000), real interest rate, real exchange rate and consumer price index (Meligkotsidou 

2011) and import-export series (Kumar et al. 2012). Although, several studies had holding single 

as well as multiple breaks in level/trend/ autoregressive coefficient or/and error variance for 

making significant inference in univariate and panel data time series models (see Bai and Perron 

1998, Wang and Zivot 2000, Shao and Zhang 2010, Kim 2011). In addition, this concept had 

been equally popular in both classical and Bayesian approach under certain mild assumptions 

and prior information. However, it is well developed framework for testing and estimating the 

patterns of structural break model with the help of model selection procedure. For this, structural 

change can be classified in such a way that one adopt hypothesis testing problem and other takes 

model selection approach. To known the stationarity of series is very important part of time 

series and unit root hypothesis is well known concept for this propose. Generally, unit root 

hypothesis with or without structural break was developed by several researchers with real 

economical situation, see Zivot and Andrews (1992), Perron (1997), Newbold et al. (2001), 

Kumar et al. (2012) and other hypothesis was identified the location and number of break points 

present in the series. This hypothesis was well developed by Vogelsang (1997), Bai and Perron 
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(1998). The literature on model selection procedure first introduced in change point by Kim and 

Maddala (1991), Wang and Zivot (2000) under Bayesian approach which uses the BIC criterion 

for selecting the best model among the models with different numbers of breaks.  

In comparison to vast literature on estimation, testing and identification of structural change for 

univariate series, there has been a growing literature for panel and multivariate time series in 

recent years among various authors. Li et al. (2015) introduced a penalized principal component 

estimation procedure for estimation and detection of break points in interactive fixed effect panel 

data model and applied to an environmental Kuznets curve related for controlling to energy 

consumption. Detection and position of multiple breaks in multivariate time series had been 

analyzed by Preuss et al. (2015) which introduced new nonparametric procedure referred as 

MuBreD procedure. MuBreD is based on a comparison of estimated spectral distribution on 

different segments of the observed times series. Recently, Shin and Hwang (2017) developed 

panel mean change CUSUM test for detection of break in panel process and illustrated by Asian 

country stock price indices. Sengupta (2017) analyzed the break testing using likelihood ratio in 

spatial panel model and proposed break-date estimator to determine the break-location.  

This article presents a single structural break point in all coefficients of a panel data setup that 

includes the analysis for real exchange effective rate of India and its neighboring countries. It is 

well known under Bayesian approach that posterior odds ratio or Bayes factor easily handle the 

problem for determining the presence of break point. Keeping in mind to consider those 

components which mainly change the structure of the series, a general fully structural break 

panel AR(1) time series model is studied.  Posterior probabilities are obtained for testing the 

structural change hypothesis using the prior assumption. Then, a simulation as well as an 
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empirical study is carried out to explore the presence of break point in REER data set of SAARC 

summit including China. 

2. Structural break model and its sub-models 

In this section, describe a fully structural break model as a function of panel AR(1) time series 

model. Let { ity } be a stochastic process with observed values on cross section unit i=1, 2, …,n 

and time t=1, 2, …,T under the assumption that time dimension is same for each cross section. 

This process { ity } is known as balanced panel data time series model and if a break at time point 

TB toward change the intercept coefficient from μi1 to μi2. Then, the model is specified as 

 (1) 

where stochastic error term uit follows panel AR(1) model with structure change on 

autoregressive coefficient and error variance at similar break point i.e. TB and it are 

independently and identical distributed random variable with mean zero and unknown variance. 

 (2) 

Operating equation (2) in equation (1) becomes  

 (3) 

This model is a panel data structural break model having change at TB in all model parameters 

i.e. intercept, variance and autoregressive coefficient. The initial value yi0 for the stochastic 
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process in (3) is assumed to be known. To recognize the impact of structure change in the model, 

test the break point hypothesis under different circumstances which may be occurring due to 

instability in model parameters. Proposed panel data structural break model (3) has several well 

known sub-models which were studied by various researchers, details are listed in appendix 

table-A1. These sub-models (hypotheses) were analysis in reference to cross-section dependence 

test, unit root hypothesis, estimating the break points and detecting structural break via model 

selection criterion under classical approach. However, these models may further analyze the 

presence of break point from a Bayesian point of view with the help of posterior odds ratio. In 

present paper, main focus on break point testing in all coefficients under Bayesian perspective 

which are jointly changing the structure of the series using posterior odds ratio.  The proposed 

hypothesis is also comparing with existing models like break in one and two parameters only. 

3. Prior Distribution 

Primarily assumption for implementing a Bayesian approach is that consider an unknown 

quantity of model parameter(s). In general, a functional form is used for parameters which 

contains some information known as prior information. It gives brief idea about the parameter 

behavior and definitely provided a better explanation. For our reference (Schotman and van Dijk 

1991, Meligkotsidou 2011), following prior distribution is considered for obtaining posterior 

probability j=1, 2 and i=1, 2,…, n. 
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4. Posterior Probability  

The present study is targeting to explore the time series model with structural break on all 

coefficients. Model may be written in various forms where break is present at single as well as 

multiple coefficient(s). Present section derives posterior probability/marginal likelihood with the 

assist of likelihood function and prior distribution. Here, we are obtaining the posterior 

probability for proposed model as well as sub-models. Let us define following notations to 

express the posterior probability: 
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Using the above notation, posterior probability under the proposed model satisfying the 

hypothesis 2
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However, many researchers getting many applications with the models which do not consider 

break point in all coefficients because all coefficients may not be much affected. Due to this 
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Liu et al. (2011) proposed a model selection approach for testing structural break in panel 

varying coefficients model and apply to OECD health expenditure data to see the performance. 

Present work explored this by considering a hypothesis 2
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Bai (2010) considered break in mean or/and variance in panel AR(1) model for estimating the 

parameters using least square or quasi-maximum likelihood method. He also obtained limiting 

distribution of estimated break point and expanded in multiple break points. The model gives 

extension for hypothesis testing problem. So, we purposed to test the presence of break point in 

mean and variance, equivalent hypothesis 2
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and under H7 when break is present in variance only, the posterior probability is,  
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For unit root hypothesis, Levin et al. (2002) considered three simple panel AR(1) model contain 
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The integral in equation (7) to (14) are difficult to evaluate especially when the prior follows 

uniform distribution. Therefore, exact or approximate analytical results are obtained by 

numerical techniques.     

5. Posterior Odds Ratio 

Under Bayesian perspective, posterior odds ratio is used in decision making for hypothesis 

testing problem and then selecting a suitable model using posterior probability. The posterior 

odds ratio is the combination of prior odds ratio with the Bayes factor of the null and alternative 

hypothesis that means it is the ratio of the posterior probability for the observed series under the 

given hypothesis. If each prior probability is deemed equally likely associated with each 

hypothesis, POR reduces to Bayes factor. The method which is used for hypothesis testing is 

Jeffrey’s hypothesis testing criterion using following steps: 

Object: To test 000 : H vs 111 : H where Θ0 and Θ1 is a set of parameters 

Step-1: Consider a prior distribution (θ) for every parameter as a random variable.  

Step-2: Write the likelihood function for a given series under a particular hypothesis. 

Step-3: Compute posterior probability/distribution under null (β0) and alternative hypothesis (β1). 

Step-4: Reject H0 if the posterior odds ratio (β01) is less than one, otherwise accept. 

The following posterior odds ratio (POR) is obtained for our proposed model using the posterior 

probability derived in equation (7) to (14) when alternative hypothesis considering break in all 

coefficients. Hypothesis testing for the model which consider break in all coefficients with other 
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particular form are given below by POR1 to POR7. However all other particular forms may also 

be tested by POR8 to POR28 which are given in Appendix Table-A2. 
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POR3: For testing the null hypothesis that series have break in mean and variance 
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POR4: For testing the null hypothesis that series have break in autoregressive coefficient 
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POR6: For testing the null hypothesis 2
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POR7: For testing the null hypothesis 2
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6. Simulation Study 

In this section, a simulation study has been presented to illustrate the application of various 

theoretical outcome developed in previous section on the basis of generated series from equation 

(3) with different sizes of series T = {40, 60, 80} and for different break point TB = {T/4, T/2, 

3T/4}. For a particular set of parameters and the simulated series, compute posterior odds ratio 

(POR) of our models and replicated the process 10,000 times. Without loss of generality, we 
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have taken 1 = 0.90 and 2 = 0.95 with hyper parameter value is l1 = 0.81 and l2 = 0.82. For 

generation series, initial value of intercept {μ.1, μ.2} = {(0.01, 0.012, 0.014), (0.02, 0.022, 0.024)} 

and error variance  = (0.009, 0.01) corresponding hyper parameter value are 

 and . The expressions of posterior 

probability are coming in a complicated form which do not analysis numerical or without any 

integration technique. In present simulation, use a Monte Carlo integration method to 

approximating the value of integral. However, this method of approximation will guarantee a 

particular rate of convergence only when the integral has continuous derivatives to a certain 

order.  

Using integration method, find the value of posterior probability for different combination of 

hypothesis. For better interpretation, one may separate POR in three different groups as per the 

presence of break point in the parameters. These groups are (i) break in all parameters (ii) break 

in any two parameters (iii) break in any one parameter only. These groups are further divided 

according to their alternative hypothesis. All statement from (i) to (iii) are tested, taking various 

null hypothesis which are listed in appendix Table-A1. As there are several values and our 

purpose is to test our proposed model with other models and conclude the inference therein. If 

the value of POR is less than one, null hypothesis is to be rejected otherwise accepted. In details 

all cases are discussed as below: 

6.1: Break in all parameters  

Considering posterior odds ratio from 1

01  to 7

01 where the alternative hypothesis is formulated 

by proposed model which allows break in mean, variance and autoregressive coefficient. The 
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null hypothesis against similar alternative hypothesis has been tested one by one and obtained the 

POR value in Table-1.  

Table-1: Posterior odds ratio when alternative hypothesis is break in all parameters 

T TB 1

01  
2

01  
3

01  
4

01  
5

01  
6

01  
7

01  

40 

10 2.59E-02 1.50E-01 5.08E-01 7.31E-03 2.39E-02 6.41E-02 7.14E-03 

20 8.52E-03 4.44E-01 5.96E-01 1.58E-03 4.37E-03 3.81E-01 4.88E-04 

30 7.64E-03 9.31E-03 2.87E-01 3.99E-03 2.04E-03 1.14E-01 2.00E-04 

60 

15 1.21E-02 2.33E-02 2.38E-01 3.94E-03 1.38E-02 3.70E-04 1.89E-03 

30 3.61E-02 5.88E-03 1.17E-01 2.67E-04 2.50E-03 1.45E-02 1.02E-04 

45 5.57E-04 1.28E-04 1.87E-01 2.62E-04 1.13E-04 1.54E-06 3.85E-05 

80 

20 5.40E-05 2.09E-03 4.56E-01 1.86E-05 2.79E-05 6.71E-05 9.65E-06 

40 5.18E-05 4.03E-03 2.39E-01 1.99E-05 1.21E-05 3.89E-04 5.11E-06 

60 1.18E-05 2.64E-02 1.03E-01 3.50E-08 1.66E-07 4.32E-06 4.08E-10 

From Table-1, the results for simulated data are very small with varying time series and also with 

different break point. One may conclude that as a size of the series increases, value of POR 

reduces and if break point considers about to lower and upper quartile of the series, POR is less 

as compare to middle break point. This turns out when series is divided in an equal part. The 

table also shows that our proposed model is always accepted to support the break series and 

make the model reliable and stationary. This may happened because break is also considered in 

random coefficient which is having more impact as compare to other parameters.  

6.2: Break in any two parameters 

Consider the situation when break is present only on two parameters. Sometimes one may be 

getting a time series which is affecting to some parameters not all parameters. To handle this 

type of scenario, we choose a particular suitable model which is considering break in any two 

parameters. The proposed model contained three parameters and the combination of parameters 

is (A) break in mean and autoregressive coefficient (B) break in variance and autoregressive 
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coefficient (C) break in mean and variance. Then, considering this as an alternative hypothesis 

and remaining all possible hypotheses are considering as a null and making inference. The 

results for all combination of hypothesis are summarized in Table-2.  

Table-2: Posterior odds ratio when alternative hypothesis is break in mean and 

autoregressive coefficient 

T TB 8

01  
9

01  
10

01  
11

01  
12

01  
13

01  

40 

10 5.80E+00 1.96E+01 2.82E-01 9.21E-01 2.47E+00 2.75E-01 

20 5.21E+01 6.99E+01 1.85E-01 5.13E-01 4.47E+01 5.73E-02 

30 1.22E+00 3.76E+01 5.22E-01 2.67E-01 1.49E+01 2.62E-02 

60 

15 1.92E+00 1.96E+01 3.24E-01 1.37E-01 3.05E-02 1.55E-01 

30 1.63E-01 3.23E+00 7.40E-03 6.91E-02 4.01E-01 2.82E-03 

45 2.30E-01 3.35E+02 4.70E-01 2.03E-01 2.77E-03 6.91E-02 

80 

20 3.87E+01 8.44E+03 3.44E-01 5.16E-01 1.24E+00 1.79E-01 

40 7.78E+01 4.60E+03 3.84E-01 2.33E-01 7.50E+00 9.86E-02 

60 2.23E+03 8.74E+03 2.96E-03 1.40E-02 3.65E-01 3.45E-05 

 

It is evident from Table-2 that ignoring break in error variance of parent series, value of POR 

gradually increases and cross the value 1 when size of series increases i.e. in this situation accept 

the null hypothesis. These hypothesis consider break in error variance, see
12

01

9

01

8

01 ,,  . In other 

terms, randomness of the model is depending upon error variance and this change the structure of 

the series more. So, discarding break in variance tends to series mean constant and this increase 

the POR value. Form Table-2, the remaining POR is less than one concluded that alternative 

hypothesis is true. 

Table-3: Posterior odds ratio when alternative hypothesis is break in 

autoregressive coefficient and error variance  

T TB 
14

01  
15

01  
16

01  
17

01  
18

01  

40 

10 3.38E+00 4.86E-02 1.59E-01 4.26E-01 4.75E-02 

20 1.34E+00 3.55E-03 9.83E-03 8.58E-01 1.10E-03 

30 3.08E+01 4.28E-01 2.19E-01 1.22E+01 2.15E-02 

60 

15 1.02E+01 1.69E-01 5.93E-01 1.59E-02 8.10E-02 

30 1.98E+01 4.55E-02 4.25E-01 2.47E+00 1.73E-02 

45 1.46E+03 2.04E+00 8.81E-01 1.20E-02 3.00E-01 
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80 

20 2.18E+02 8.89E-03 1.33E-02 3.21E-02 4.62E-03 

40 5.92E+01 4.93E-03 3.00E-03 9.64E-02 1.27E-03 

60 3.91E+00 1.32E-06 6.29E-06 1.63E-04 1.54E-08 

 

If we do not consider break in mean in our specified model, hypothesis is coming only for break 

in autoregressive coefficient and error variance and testing for remaining null hypothesis be 

carried out in Table-3. As we know that error term affect the series much more than other 

parameters like trend component, intercept etc. and then fluctuation in the series after the break 

point is more due to break in error term which may or may not depend upon series. This directly 

impacts the model’s stationarity. Hence, POR is always greater than 1 which can be seen in
14

01 . 

For other null hypothesis, accept the alternative model with varying size of the series.  

Table-4: Posterior odds ratio when alternative hypothesis 

is break in mean and error variance 

T TB 
19

01  
20

01  
21

01  
22

01  

40 

10 1.44E-02 4.70E-02 1.26E-01 1.41E-02 

20 2.65E-03 7.33E-03 6.40E-01 8.20E-04 

30 1.39E-02 7.11E-03 3.96E-01 6.99E-04 

60 

15 1.66E-02 5.82E-02 1.56E-03 7.95E-03 

30 2.29E-03 2.14E-02 1.24E-01 8.73E-04 

45 1.40E-03 6.05E-04 8.27E-06 2.06E-04 

80 

20 4.07E-05 6.11E-05 1.47E-04 2.12E-05 

40 8.34E-05 5.07E-05 1.63E-03 2.14E-05 

60 3.38E-07 1.61E-06 4.18E-05 3.95E-09 

Table-4 is considering break in mean and error variance i.e. ignore the break in autoregressive 

coefficient. Here it is revealed that proposed hypothesis significantly affecting the correct model. 

Hence all null hypotheses are rejected because POR is less than one.  

6.3: Break in any one parameter only  



19 
 

In real scenario, change in any parameter value may affected the whole series specially, for 

example if  is equal to one means series is unit root otherwise stationary. Similarly, this type of 

cases is also taken in our account to make appropriate conclusion about the remaining model 

under all situations.  Table-5 summarized the results for analysis of break point in one parameter.  

Table-5: Posterior odds ratio when alternative hypothesis is break in 

 

Autoregressive Coefficient Mean Error 

Variance T TB 
23

01  
24

01  
25

01  
26

01  
27

01  
28

01  

40 

10 3.27E+00 8.77E+00 9.77E-01 2.69E+00 2.99E-01 1.11E-01 

20 2.77E+00 2.42E+02 3.09E-01 8.73E+01 1.12E-01 1.28E-03 

30 5.12E-01 2.85E+01 5.03E-02 5.58E+01 9.83E-02 1.76E-03 

60 

15 3.51E+00 9.41E-02 4.80E-01 2.68E-02 1.37E-01 9.58E-02 

30 9.34E+00 5.42E+01 3.81E-01 5.81E+00 4.08E-02 7.03E-03 

45 4.31E-01 5.89E-03 1.47E-01 1.37E-02 3.40E-01 9.25E-01 

80 

20 1.50E+00 3.62E+00 5.20E-01 2.41E+00 3.46E-01 1.44E-01 

40 6.08E-01 1.95E+01 2.57E-01 3.21E+01 4.22E-01 1.31E-02 

60 4.75E+00 1.23E+02 1.17E-02 2.60E+01 2.46E-03 9.45E-05 

 

From Table-5, if hypothesis considers break in autoregressive coefficient which is not making 

better understanding either it is accepted or rejected depend. Here we have considered only the 

situation of stationary series. Then, this null hypothesis may consider that there is break in mean 

or variance which sometimes affects the series because POR is greater than one. This shows that 

break present in autoregressive coefficient is also affecting the series.  

7. Application 

South Asian Association for Regional Cooperation (SAARC) is regional organization of South 

Asia countries, namely Afghanistan, Bangladesh, Bhutan, India, Nepal, Maldives, Pakistan and 

Sri Lanka. It brings together for strengthen the economical, technological, social and cultural 

development among the associated countries and mentor for establishing the relation with 
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developed nations to get support and assistance. There are various levels when member countries 

work together by undertaking joint/connected programs (Shaheen (2013)). Hence, a relationship 

can be well established for economic policies of mutual interest. In this section, consider annual 

historical data of real effective exchange rate (REER) of SAARC country for the period 1979 to 

2016. There are eight countries out of which REER series of Afghanistan is available since 2002 

so this is not included in the analysis. The purpose of present application is to examine the 

presence of structural break in the parameters. Firstly, a natural way is used for determining the 

number and location of break point in individual series which is well developed by Zeileis et al. 

(2002). For all countries, the most preferred break point and its position are summarized in 

Table-6.  

Table-6: Number of identified break points 

for REER data set 

Country Number of Breaks TB 

 Bangladesh 0 NA 

 Bhutan 1 1991 

India  1 1991 

Maldives 1 1992 

Nepal 1 1991 

 Pakistan 1 1991 

Sri Lanka 1 2004 

China 1 1991 

 

Present study emphasis only common break point in balanced panel which is occurred at the year 

1991 except Bangladesh, Maldives and Sri Lanka. This was the year when economic conditions 

changed due to second Gulf war, oil crisis, political instability and international trading. For 

analysis purpose, consider these countries which are having similar break point as a panel and 

dropped others from the analysis. The most appropriate model for this data set is selected among 

the proposed and per-existing model by using Akaike information criterion (AIC) and Bayes 



21 
 

information criterion (BIC) considering break at TB =1991. For information criterion value, 

likelihood function is evaluated at the posterior mean. The model which has the lowest AIC and 

BIC value is the best suitable model for REER data and shown in Table-7.    

 

Table-7:Model selection for REER data set 

Model LogL AIC BIC 

PAR (1, 2, μi1, μi2, σ1, 

σ2) 

463.6662 947.3325 977.2416 

PAR(, μi1, μi2, σ1, σ2) 465.3792 948.7585 978.9803 

PAR(1, 2, μi1, μi2, σ) 472.1972 962.3945 990.8776 

PAR(1, 2, μi, σ1, σ2) 471.5557 957.1115 979.2650 

PAR(, μi, σ1, σ2) 478.7935 969.5871 988.5758 

PAR(, μi1, μi2, σ) 474.0607 964.1214 989.4397 

PAR(1, 2, μi, σ) 486.0198 984.0396 1003.0280 

PAR(, μi, σ) 490.4496 990.8991 1006.7230 

 

A testing of hypothesis is performed after indentifying the position of break. To determine the 

value of posterior odds ratio for test the instability of parameter(s). Table-8 shows the values of 

POR toward considering the ratio of various posterior probabilities with condition that 

probability of favoring of null and alternative is equal i.e. prior probability is equal to 1. 

Table-8: POR value at break point 1991 

 

H1 H2 H3 H4 H5 H6 H7 H8 

H1 1.00E+00 

       H2 3.52E-16 1.00E+00 

      H3 6.24E-05 1.77E+11 1.00E+00 

     H4 5.51E-02 1.57E+14 8.82E+02 1.00E+00 

    H5 3.56E-17 1.01E-01 5.71E-13 6.47E-16 1.00E+00 

   H6 2.34E-17 6.65E-02 3.75E-13 4.25E-16 6.57E-01 1.00E+00 

  H7 2.04E-06 5.80E+09 3.27E-02 3.70E-05 5.73E+10 8.72E+10 1.00E+00 

 H8 3.36E-18 9.54E-03 5.37E-14 6.09E-17 9.41E-02 1.43E-01 1.64E-12 1.00E+00 
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Table-8 display appropriate conclusion about our proposed model and shows that all null 

hypothesis in REER is reject when alternative hypothesis consider break in mean, error variance 

and autoregressive coefficient i.e. for POR1-POR7, the posterior odds ratio is less than one. This 

demonstrates that model is containing break in all parameters which raise an appropriate 

interpretation and make the series stationary as comparison with other models. For other 

hypothesis similar results are obtained because ratio of posterior probability is less than one. But 

series instability is more due to presence of break in mean as well as variance or break in 

variance only because of posterior probability in favor of this hypothesis which is higher as 

compare to others model. This impact also observed by partially effected variables. Since whole 

series may be stationary for a particular model. However, in a structural break model at a fixed 

break point the series is converting a non-stationary. Therefore, change in the autoregressive 

coefficient has been also tested the unit root hypothesis before/ after the break point and then 

achieved the outcomes. The outcomes give productive results for this data set and show that real 

effect exchange rate is changing due to more variation in their import and export of commodities, 

level shifting by oil crisis and political governance of the countries.  

8. Conclusion  

In the present study, we deal with break point problem in PAR (1) time series model under 

Bayesian framework. The impact of break point in parameter(s) has been recorded using 

posterior odds ratio and observed that break is present of REER series for all coefficients which 

is our proposed model. This change on coefficients may be handled by proper implementing 

economic policy to the nation. It is also noticed that proper handling of break is important before 

modeling the series. The similar results are observed for simulated data also. Overall, we can 
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concluded that if break in variance is present in any model, model is more unstable and 

fluctuations of the series is more because of more randomness is taken by error term and this 

change the structure of the series up and down.  
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Table-A1: Formulation of Hypothesis 
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Table-A2: Formulation of Posterior Odds Ratio 

Hypothesis Posterior Odds Ratio (POR) 
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Null(H4): break in mean and variance 

Alternative(H3): Break in variance and 
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Null(H6): break in mean 
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Null(H7): break in variance 
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Null(H8): No break 

Alternative(H3): Break in variance and 

autoregressive coefficient        
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Null(H5): break in autoregressive 

coefficient 

Alternative(H4): break in mean and 
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Null(H6): break in mean 
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Null(H8): No break 
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Null(H7): break in variance 
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Null(H8): No break 

Alternative(H5): break in 

autoregressive coefficient        
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Null(H7): break in variance 

Alternative(H6): break in mean 
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Null(H8): no break 

Alternative(H6): break in mean 
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Null(H8): no break 

Alternative(H7): break in variance 
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