
EERI
Economics and Econometrics Research Institute 

EERI Research Paper Series No 06/2011 

ISSN: 2031-4892 

Copyright © 2011 by Ghassen El Montasser 

The overall seasonal integration tests under non-stationary 
alternatives: A methodological note 

Ghassen El Montasser 

EERI
Economics and Econometrics Research Institute 
Avenue de Beaulieu 
1160 Brussels 
Belgium

Tel: +322 299 3523 
Fax: +322 299 3523 
www.eeri.eu



1

The overall seasonal integration tests under non-stationary alternatives:  

A methodological note 

Ghassen El Montasser a

Abstract 

Few authors have studied, either asymptotically or in finite samples, the size and power of seasonal 

unit root tests when the data generating process [DGP] is a non-stationary alternative aside from the 

seasonal random walk. In this respect, Ghysels, lee and Noh (1994) conducted a simulation study by 

considering the alternative of a non-seasonal random walk to analyze the size and power properties of 

some seasonal unit root tests. Analogously, Taylor (2005) completed this analysis by developing the 

limit theory of statistics of Dickey and Fuller Hasza [DHF] (1984) when the data are generated by a 

non-seasonal random walk. del Barrio Castro (2007) extended the set of  non-stationary alternatives 

and established, for each one, the asymptotic theory of the statistics subsumed in the HEGY 

procedure. In this paper, I show that establishing the limit theory of F-type statistics for seasonal unit 

roots can be debatable in such alternatives. The problem lies in the nature of the regressors that these 

overall F-type tests specify. 
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1. Introduction 

The stochastic nature of the seasonality seems to gain ground in empirical studies. Several 

aspects related to seasonal unit root tests were treated in the literature. In this respect, the power of 

these tests against non-stationary alternatives is an important issue that recently acquired some 

concern. To the best of our knowledge, Ghysels, Lee, and Noh [GLN] (1994) are the first authors who 

studied this problem. In fact, in a Monte Carlo study, they showed that against a non-seasonal random 

walk, the power of the tests of Dickey, Hasza and Fuller (1984) lies well lower than that of the tests of 

Hylleberg, Engle, Granger and Yoo [HEGY]  (1990). Ghysels et al. guessed that “the Dickey et al. test 

may not separate unit roots at each frequency” (p. 432). The restriction behind the Dickey et al. 

procedure is that all the unit roots (conventional and seasonal roots) have a modulus of one. Thus, it is 

clear that the conventional random walk does not fulfil this requirement. However, Rodrigues and 

Osborn (1999) showed that if this restriction holds, the power of the tests of Dickey et al. would have 

a proper superiority in finite samples with regard to that of the tests of Hylleberg and al. (1990). In an 

interesting contribution, Taylor (2003) analysed the large sample behaviour of the seasonal unit root 

tests of Dickey et al. when the data generating process (DGP) is a non-seasonal random walk, i.e. 

when the series only admits a zero frequency unit root. In such case and as shown by Taylor (2003), 

all the Dickey et al. statistics have non-degenerate limiting distributions. These results theoretically 

explain the empirical findings of GLN. Furthermore, Taylor (2005) showed that asymptotically the 

statistics of the Dickey et al. augmented test will also do not diverge. In the same context, del Barrio 

Castro (2006) generalized the results of Taylor (2003) to a set of non-stationary alternatives which 

include the non seasonal random walk.  He found also that the Dickey et al. statistics did not have 

standard limiting distributions and did not diverge. Based on the same methodology, del Barrio Castro 

(2007) established the limit theory of the statistic of Fisher and those of Student subsumed by the 

HEGY procedure. Accordingly, he theoretically derived the effect that can asymptotically have one 

unit root on the others at different frequencies. Following the terminology of Busetti and Taylor 

(2003), we have, in these situations, “unattended unit roots”.  However, del Barrio Castro (2007), in 

his large sample analysis, did not directly consider the effects of non-stationary alternatives on the 

overall F-type statistic of seasonal integration1 which is complementally specified for the HEGY 

procedure by GLN (1994).  

The well-known Fisher tests of the overall seasonal integration null hypothesis are those of 

Kunst  (1997) and Hylleberg et al. (1990). Although these two tests are asymptotically related, they 

have a main difference in the nature of the explanatory variables used in their basic regressions. 

Indeed, Kunst’s regressors are original variables; however, the HEGY procedure involves regressors 

1 In this paper, we adopt the seasonal integration definition of Ghysels and Osborn (2001, p. 43) 
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that are obtained by non-singular linear transformation of those used by Kunst. Consequently, the 

HEGY regressors show an ultimate property, to wit, the asymptotic orthogonality. 

In a recent paper, Osborn and Rodrigues (2002) developed an appealing and unifying approach 

for deriving asymptotic results regarding the statistics of the most commonly used seasonal unit root 

tests. The data generating process (DGP) considered by these authors is the seasonal random walk. 

This approach is based on the use of circulant matrices which could, in seasonal context, retrieve the 

limit theory of the involved statistics as well as conveniently traducing the dynamics of time series and 

its evolution across different seasons. In a similar vein, Haldrup, Montanes and Sanso (2005) used this 

approach to show the effects of outliers on the limit theory of seasonal unit root tests. 

However, most often economic time series are not simultaneously affected by all seasonal unit 

roots. This empirical finding is all the more consolidated since the practitioners jointly use the 

deterministic seasonality and seasonal unit root tests as advised by Hylleberg (1995). Therefore, it is 

interesting to consider non-stationary alternatives, aside from the seasonal random walk assumption, in 

the finite and large sample studies on the part of seasonal unit root tests. 

Here I focus on whether the overall F-type statistic limit theory can be directly and rigorously 

established when the observed series is generated from the non-stationary alternatives treated by del 

Barrio Castro (2006). I mean by the word “directly” that in establishing the limit theory in question, 

we do not resort to transformations of the involved regressors. More specifically, I show that when the 

DGP is one of these non-stationary alternatives and the considered regressors do not satisfy the 

asymptotic orthogonality, the approach proposed by Osborn and Rodrigues (2002) doesn’t work. 

The paper proceeds as follows. In the following section, I give some preliminaries about the 

overall F-tests for seasonal unit roots. I expose the most famous ones, namely those of Hylleberg et al. 

(1990) and Kunst (1997). Next, I specify a possible set of the data generating processes (DGP) for 

observed quarterly series. The study can be extended to another data observation frequency, but I 

retain the quarterly case for illustrative purposes. Put differently, considering quarterly time series 

affords a clear analysis on account of the reduced number of involved unit roots. The third section 

discusses how specious asymptotic results, regarding F-type statistics for seasonal unit roots in their 

entirety, can be reached under non-stationary alternatives. This theoretical study is accompanied by a 

simulation exercise where I allow for possible augmentation with lagged terms of dependent variable 

in the regression models corresponding to the studied tests, in order to assess their performance against 

non-stationary alternatives. In the last section, I conclude.  
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2. Preliminaries 

       2.1  The Kunst test 

The Kunst test for quarterly time series is based on the following regression 

                ,... 433114 ttttt yyyy ���� ������ ��� ,,...,1 Tt �                    (1) 

which is an F-type test of the form 

                 ),ˆˆ/()ˆˆˆˆ)(4( ''
0

'
0

*
ˆ,ˆ,...,ˆ 31

��������� ��� TF                                           (2) 

where 0�̂  and  1̂�   are vectors of residuals estimated under the null  0...: 310 ���� ���H  and  

alternative hypotheses of the test. I assume without any loss of generality that al the initial values 

required by Eq. (1) are null.  We can remark that Kunst did not divide the numerator of the statistic (2) 

by 4, the number of restrictions, as we did it to perform a conventional Fisher test. 

            2.2  The HEGY test 

The basic regression for the HEGY test, without any augmentation and with no deterministic terms, is: 

                    ,1342331221114 tttttt yyyyy �				 ������ ����       ,,...,1 Tt �    (3) 

where 

                        ,)1( 32
1 tt yLLLy ����

                         ,)1( 32
2 tt yLLLy �����                                     (4) 

                          ,)1( 2
3 tt yLy ���

with L is the lag operator. 

GLN has extended the HEGY approach with a joint test statistic  1234F  for the null hypothesis, 

0: 43210 ���� 				H , implying all unit roots in data observed at quarterly frequency. 0H is

an overall hypothesis for seasonal integration SI (1) in accordance with the notation of Ghysels and 

Osborn (2001). 

Note that we have 
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We can deduce from (5) that the regressors of the Kunst test are non-singular linear transformations of 

those of the HEGY test. Consequently, the F-type statistics, 1234F  and 4/*
ˆ,ˆ,...,ˆ 31 ���

F , will have the same 

limit theory. Given that the two statistics are asymptotically related, the analysis is confined to that of 

Kunst in the sequel. 
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Hence, we can observe that there exist a little bit differences between the critical values of both 

statistics. In general, such critical values are tabulated supposing that the DGP of ty  is:

                                   .4 ttt eyy �� �                              (A.0) 

In this paper, I assume that the DGP of ty drawn from one of the following stochastic processes: 

                                   ,1 ttt eyy �� �                              (A.1) 

                                   ,1 ttt eyy ��� �                            (A.2) 

                                   ,2 ttt eyy �� �                               (A.3) 

                                   ,2 ttt eyy ��� �                             (A.4) 

         and 

                                   .321 ttttt eyyyy ����� ���            (A.5)  

By using the double subscript notation, we can define the following annual vectors: 

                                 ,)',,,( 4321 nnnnn yyyyY �

and   

                                ,)',,,( 4321 nnnnn eeeeE �

where we suppose that Nn ,...,1�  and in the T observations there is N years, simply let .4NT �

To keep matters tractable, I suppose that  .)0,0,0,0()',,,( '
403020100 �� yyyyY

The error processes in the alternatives (A.1)-(A.5) follows a stationary AR(p)  

                                              ,)( snsn veL ��

where i
p

i
isn zez �

�

��
1

1)( �� and s=1,…,4.  

The roots of  0)( �z�  all lie outside the unit circle .1�z  As for the error sequence � �snv , it depicts 

an innovation process with constant  conditional variance 2�  (see Spanos, 2003, p. 443). Similarly to 

what has been conjectured by del Barrio Castro (2007) regarding to the error structure in the non-

stationary alternatives described above, I suppose that the vector nE has the following dynamics: 

                                                 ,
0

*
n

j
jn VE �

�

�

��

where ,)',,,( 4321 nnnnn vvvvv �  and I define the sequence of 44�  matrices as: 
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j
j zz �

�
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1

1)( ��

being the inverse of  ).(z�  Finally, )1(*�  is defined as 

                                                .)1(
0

** �
�

�

���
j

j

del Barrio Castro (2006) used the vector of moving average representation in order to express the 

alternatives (A.i), i =1,…5, in a vector of quarters representations where the observations of each year 

are stacked in the above defined vectors nY  et nE , let 

                              ,)()1( 10 n
ii

n EBYB ����� ,5,...,2,1�i                        (6) 

where B is the annual backward operator. The 44�  matrices i
0�  and i

1�  (corresponding to the 

alternatives A.1-A.5) are defined as follows 
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The following result was established by del Barrio Castro (2007) 

),(1
][ rBY

N idrN �
�

),()1()( * rBCrB ii �� ii
iC 10 ���� , ,5,...,2,1�i                    (8) 

where the symbol “ d� ” denotes the convergence of probability measures, )(rBi is a 14�  vector 

Brownian motion process with variance matrix  ''**2 )1()1( iii CC ���� �  and )(rB  is a vector 

Brownian motion with variance matrix 4
2 I� . The subscript i  corresponds to the alternative (A.i), i = 

1,…, 5. 

Note that the rank of iC , ,5,...,1�i is the number of (seasonal) unit roots implied by the process (A.i), 

i =1,…,5. In order to determine the number of cointegration relations between the quarters, 

corresponding to every process (A.i), i =1,…,5, we have to subtract from the periodicity of the 

quarterly data, i.e. 4, the rank of the matrix iC , 5,...,1�i .  We can rewrite Eq. (8)  more precisely by 

identifying the stochastic processes ,5,..2,1),( �irBi  on the grounds that there is always 

cointegration among the quarters of the time series; see del Barrio Castro (2007, p.915). 

3. Limit theory of the Kunst test under nonstationary alternatives 

I first introduce the following lemma which can be directly deduced from the preceding result of del 

Castro Barrio (2007) and lemma A.1 of Osborn and Rodrigues (2002). 

Lemma. Suppose that the DGP of ty  in (1) is given by the alternatives (A.1)-(A.5) and suppose that 

the vector ,),,...,( 41 nee nn � satisfies the assumption 1 of Phillips (1986, p.313), we have under the null 

of the Kunst test as ��T
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d) ,)()(
16

''1

0

'
2

1

2 drrBMHHMrByyT ijkid

T

t
jtkt �� �

�
��

� �
,jk � .5,...,2,1�i

e) ),()(
4

''1

0

'
2

1

1 rdBMHMrByT ikid

T

t
tkt �� �

�
�

� �
� ,4,...,1�k ,5,...,2,1�i

where )',,,( 4321 nnnnn ����� �  and ).1(*�� ii CM

The matrix ,kH ,4,3,2,1�k is a particular permutation matrix order 4 which produces the following 

elementary operations: let a matrix K  having 4 lines, the operation KH1 moves the last row of K  to 

the top row of  KH1   and the other rows moved down one place. More generally, KHi shifts the 

final iths rows to the top of the matrix while the remaining rows correspondingly moved down. Note 

that 44 IH �  (see Golub and Van Loan, 1996, p. 109-112, for details). 

The preceding lemma is mathematically correct however its use, under certain circumstances, 

may not be valid  as will be explained in the sequel.

Let denote by �̂  the OLS estimator of the vector '
321 ),,,( ����� � defined in the Eq. (1). When 

the DGP of ty in (1) is given by one of the alternatives (A.1)-(A.5), we can achieve this nugatory 

asymptotic result by using the preceding lemma:

                R.1) ,)ˆ(
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   Before starting the spuriousness of the asymptotic result R.1), I should give some explanation 

regarding the properties of the matrix F: the elements of the main diagonal of F are all equal. Besides, 

the elements of F along each diagonal line parallel to the principal diagonal are equal. Thus, F is a 

Toeplitz.
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Toeplitz matrices belong to the larger class of persymmetric matrices. A square matrix B of order n is 

persymmetric if it symmetric about its northeast-southwest diagonal, i.e.,  1,1 ����� injnij bb  for all 

i and .j

Moreover, from the properties of the matrices ,kH ,4,3,2,1�k it can be shown that the matrix F is 

also symmetric as well as its inverse. 

. The equation (1) can be written in matrix form: 

                                 ,�� �� XY                                   (9) 
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We have also: 
T
X

T
XXT ���

'
1

2

'

)(
4
1)ˆ(

4
��� . By way of parts c), d) and e) of the preceding lemma 

and by using the fact that ,44 IH �  we can state spuriously the result R.1). This can be explained by 

the singularity of the matrix F. More clearly, in view of the result R.1), we deduce that the matrices 

iC and iM are singular. The product kj HH ' is of a simple form, since it usually yields another 

kH matrix. Then, the product term lkjl MHHM ''  inherits the singularity from these factors. As a 

result, F becomes singular. 

Now, if we write the Kunst’s F-type statistic as follows:  ,ˆ])[(ˆ '12'*
ˆ,ˆ,...,ˆ 31

����� XXSF �� where 2S is

the OLS estimator of the residual variance in Eq.(1), we can  also state erroneously the following 

result:

R.2) fFfF d
1'*

ˆ,ˆ,...,ˆ 31

�����
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In cases where some of the frequencies do not admit unit roots, the kunst’s statistic *
ˆ,ˆ,...,ˆ 31 ���

F , or also 

the HEGY F-type statistic 1234F , diverge to plus infinity at rate T; i.e. the Kunst test is consistent 

under the alternative it is set up for; see Taylor (2005) and GLN (1994). Consequently, the asymptotic 

result  R.2) stating that F-statistic to be )1(pO   is in error. 

The approach of Osborn and Rodrigues (2002) cannot be applied to the Kunst  test because its 

regressors  oblige us to work in unstable modes. This is why Lai and Wei (1983) and Chan and Wei 

(1988) used eigenvector transformations to isolate the stable and unstable modes. 

I have generated the empirical quantiles of the Kunst test for the processes (A.1)-(A.5) and associated 

with nominal levels 90%, 95% and 99%. The sample size considered is 4000 (1000 years) and the 

number of replications is 20000. I have found that these empirical quantiles tend to be infinite. These 

results are not exposed here but they are available upon request. Consequently, it is possible to predict 

that in 100% of cases we reject the null hypothesis for the processes (A.1)-(A.5) and for nominal 

levels of 5% and 1%, as shown by Table 1 which reports the rejection frequencies for a sample size of 

100 (25 years) and a number of replications of 20000. Al simulations were done with the software 

Matlab.  . 

Table 1 : empirical rejection frequencies of Kunst test under nonstationary alternatives 

Kunst Test  Processes 

 (A.0) (A.1) (A.2) (A.3) (A.4) (A.5) 
*

ˆ,ˆ,...,ˆ 31 ���F

nom. size 5% 
0.095 1 1 1 1 1

*
ˆ,ˆ,...,ˆ 31 ���F

nom. size 1% 
0.0158 1 1 1 1 1

  Number of replication: 20000, sample size 4N = 100 observations . 

     nom. size: nominal size. 

     



11

   Table 2 : empirical rejection frequencies of the Kunst augmented test under nonstationary 

alternatives

  Processes 

  (A.0) (A.1) (A.2) (A.3) (A.4) (A.5) 

nom.size  5%        

 p=2 0.0592 1 1 1 1 1 

 P=4 0.0549 1 1 1 1 0.9920

 P=6 0.0522 1 1 0.9980 0.9976 0.9038

nom.size  1%        

 p=2 0.0140 1 1 1 1 0.9998

 P=4 0.0141 1 1 0.9992 0.9991 0.9271

 P=6 0.0121 0.9990 0.9990 0.97770 0.97460 0.6632

Also, we have augmented regression (1) corresponding to the Kunst test by lagged values of 

dependent variable. Thus, this regression becomes 

                         ,...
1

4433114 tit

p

i
tttt yyyyy ���� �������� �

�
��� � .,...,1 Tt �      (10) 

In Table 2 below we report the power of the augmented Kunst test against the non-stationary 

alternatives (A.1)- (A.5).  

We see from the results in Table 2 that the perfect power is maintained in all the alternatives 

(A.1)- (A.5) even if we increase the number of lagged terms of dependent variable. At this 

level, a slight exception to this general finding was detected for the alternative (A.5) and for p 

= 4 or 6. Particularly, and for this alternative, the exception is much clearer for p = 6 and the 

nominal level 1%. In fact, the test power decreases and reaches a value around 66%.

4. Conclusion 
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A large literature has risen on testing for seasonal unit roots during the last two decades. However, 

the majority of econometricians, treating this topic, have focused on providing the limit theory of the 

tests for unit roots at the zero, Nyquist  and harmonic seasonal frequencies by considering either an 

additional determinist component or a modified assumption set concerning the error terms which 

appear in the regression models associated with such tests. Seldom have studies centered on the power 

of seasonal unit roots against non-stationary alternatives. Ghysels et al. (1994) early set out this 

problem and, in a simulation study, they guessed that the DHF test may not separate unit roots at each 

frequency. Having enriched this analysis by a large sample investigation, Taylor (2003) found that the 

DHF statistics did not diverge to minus infinity when the DGP of the series is a conventional random 

walk. del Barrio Castro (2006, 2007) considered an extended set of non-stationary alternatives and 

studied their asymptotic effects on the DHF and HEGY statistics. 

In this paper, I showed that resorting to the approach of Osborn and Rodrigues (2002) can be 

problematic when the non-stationary alternatives, as defined by del Castro Barrio (2007), are taken 

into account. Appealing as this approach is, it conceives the DGP only as a seasonal random walk. 

Consequently, it cannot be appropriately used, under such alternatives, when the regressors are 

original variables and do not satisfy the asymptotic orthogonality. Indubitably, such a property 

simplifies the establishment of the asymptotic theory of the statistics in question.  Moreover, via a 

simulation study, I found that the Kunst test maintains high power in cases where some of the 

frequencies do not admit unit roots. In addition, these high-power properties are preserved when I 

proceeded to augment the regression model of the test with lagged dependent variables. This clearly 

shows that Kunst’s statistics diverge in these situations. 
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