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Abstract

The aim of this paper is to compare statistical properties of stock price indices in periods of 

booms with those in periods of stagnations. We use the daily data of the four stock price indices 

in the major stock markets in the world: (i) the Nikkei 225 index (Nikkei 225) from January 4, 

1975 to August 18, 2004, of (ii) the Dow Jones Industrial Average (DJIA) from January 2, 1946 

to August 18, 2004, of (iii) Standard and Poor’s 500 index (SP500) from November 22, 1982 to 

August 18, 2004, and of (iii) the Financial Times Stock Exchange 100 index (FT 100) from 

April 2, 1984 to August 18, 2004. We divide the time series of each of these indices in the two 

periods: booms and stagnations, and investigate the statistical properties of absolute log returns,

which is a typical measure of volatility, for each period. We find that (i) the tail of the 

distribution of the absolute log-returns is approximated by a power-law function with the 

exponent close to 3 in the periods of booms while the distribution is described by an exponential

function with the scale parameter close to unity in the periods of stagnations.  
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exponential distributions  
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1 An earlier version of this paper was presented at the 8th Annual Workshop on 
economics with Heterogeneous Interacting Agents (WEHIA2003) hold at Institute in 
World Economy, Kiel, Germany, May 29-31, 2003 and published in the proceedings 
volume (Kaizoji 2005). In this version we expand the empirical investigation and 
rewritten the old version entirely.  
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1. Introduction  

The statistical properties of the fluctuations of financial prices have been widely 

researched since Mandelbrot (1963) and Fama (1965) presented evidence that return 

distributions can be well described by a symmetric Levy stable law with tail index close 

to 1.7. In particular, a large number of empirical studies have shown that the tails of the 

distributions of returns and volatility follow approximately a power law with estimates 

of the tail index falling in the range 2 to 4 for large value of returns and volatility. (See, 

for examples, de Vries (1994); Pagan (1996); Longin (1996), Lux (1996); Guillaume et al. 

(1997); Muller et al. (1998); Gopikrishnan et al. (1998), Gopikrishnan et al. (1999), 

Plerou et al. (1999), Liu et al. (1999)). However, there is evidence against power-law 

tails too. For instance, Barndorff-Nielsen (1997), Eberlein et al. (1998) have 

respectively fitted the distributions of returns using normal inverse Gaussian, and 

hyperbolic distribution. Laherrere and Sornette (1999) have suggested to describe the 

distributions of returns by the Stretched-Exponential distribution.  Dragulescu and 

Yakovenko (2002) have shown that the distributions of returns have been approximated 

by exponential distributions. More recently, Malevergne, Pisarenko and Sornette (2004) 

have suggested that the tails ultimately decay slower than any stretched exponential 

distribution but probably faster than power laws with reasonable exponents as a result 

from various statistical tests of returns.  

Thus opinions vary among scientists as to the shape of the tail of the distribution of 

returns (and volatility). While there is fairly general agreement that the distribution of 

returns and volatility has power-like tail for large values of returns and volatility, there 

is still room for a considerable measure of disagreement about the hypothesis. At the 

moment we can only say with fair certainty that (i) the power-law tail of the distribution 

of returns and volatility is not an universal law and (ii) the tails of the distribution of 

returns and volatility are heavier than a Gaussian, and are between power-law and 

exponential.  

There is one other thing that is important for understanding of price movements in 

financial markets. It is a fact that the financial market has repeated booms (or bull 

market) and stagnations (or bear market). To ignore this fact is to miss the reason why 
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price fluctuations are caused. This is an important fact to stress. However, in a large 

number of empirical studies, which have been made on statistical properties of returns 

and volatility in financial markets, little attention has been given to the relationship 

between market situations and price fluctuations. Kaizoji (2004a) investigates this 

subject using the historical data of the Nikkei 225 index. We found that the shape of the 

volatility distribution in the period of booms was different from that in the period of 

stagnations2.

The purpose of this paper is to examine the statistical properties of volatility 

distributions. We use the daily data of the four stock price indices of the three major 

stock markets in the world: the Nikkei 225 index, the DJIA. SP500, and FT100, and 

compare the shape of the volatility distribution for each of the stock price indices in the 

periods of booms with that in the period of stagnations. We find that (i) the tail of the 

distribution of the absolute log-returns is approximated by a power-law function with 

the exponent close to 3 in the periods of booms while the distribution is described by an 

exponential function with the scale parameter close to unity in the periods of stagnations. 

These indicate that so far as the stock price indices we used are concerned, the same 

observation on the volatility distribution holds in all cases.  

The rest of the paper is organized as follows: the next section analyzes the stock price 

indices and shows the empirical findings. Section 3 describes the stochastic model, and 

section 4 shows results of the simulation and section 5 gives concluding remarks.  

 
2.  Empirical analysis 

2.1. Stock Price Indices 

We investigate quantitatively the four stock price indices3of the three major stock 

markets in the world, that is, (a) the Nikkei 225 index (Nikkei 225), which is the 

price-weighted average of the stock prices for 225 large companies listed in the Tokyo 

Stock Exchange, (b) the Dow Jones Industrial Average (DJIA) which is the 
                                                  
2 More recently, Yang et. al. (2008) discusses the changes the tail index of the return distribution in 
terms of market efficiency. 
3 The prices of the indices are close prices which are adjusted for dividends and splits. 
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price-weighted average of 30 significant stocks traded on the New York Stock Exchange 

and Nasdaq, (c) Standard and Proor’s 500 index (SP 500) which is a market-value 

weighted index of 500 stocks chosen for market size, liquidity, and industry group 

representation, and (d) FT 100, which is similar to SP 500, and a market-value weighted 

index of shares of the top 100 UK companies ranked by market capitalization. Figure 

1(a)-(d) show the daily series of the four stock price indices: (a) the Nikkei 225 from 

January 4, 1975 to August 18, 2004, (b) DJIA from January 2, 1946 to August 18, 2004, 

(c) SP 500 from November 22, 1982 to August 18, 2004, and (d) FT 100 from April 2, 

1984 to August 18, 2004.  

After booms of a long period of time, the Nikkei 225 reached a high of almost 40,000 

yen on the last trading day of the decade of the 1980s, and then from the beginning 

trading day of 1990 to mid-August 1992, the index had declined to 14,309, a drop of 

about 63 percent. A prolonged stagnation of the Japanese stock market started from the 

beginning of 1990.  

The time series of the DJIA and SP500 had the apparent positive trends until the 

beginning of 2000. Particularly these indices surged from the mid-1990s. There is no 

doubt that this stock market booms in history were propelled by the phenomenal growth 

of the Internet which has added a whole new stratum of industry to the American 

economy. However, the stock market booms in the US stock markets collapsed at the 

beginning of 2000, and the descent of the US markets started. The DJIA peaked at 

11722.98 on January 14, 2000, and dropped to 7286.27 on October 9, 2002 by 38 

percent. SP500 arrived at peak for 1527.46 on March 24, 2000 and hit the bottom for 

776.76 on October 10, 2002. SP500 dropped by 50 percent. Similarly FT100 reached a 

high of 6930.2 on December 30, 2000 and the descent started from the time. FT100 

dropped to 3287 on March 12, 2003 by 53 percent.  

From these observations we divide the time series of these indices in the two periods 

on the day of the highest value. We define the period a period until it reaches the highest 

value as the period of booms and the period after that as stagnations, respectively. The 

periods of booms and stagnations for each index of the four indices are collected into 

Table 1.  
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Name of Index The Period of Booms The Period of Stagnations 

Nikkei225 Jan. 4, 1975 – Dec. 30, 1989 Jan. 4, 1990 -Aug.18, 2004 

DJIA Jan. 2, 1946 – Jan. 14, 2000   Jan. 18, 2000-Aug. 18, 2004 

SP500 Nov. 22, 1982-Mar. 24, 2000  Mar. 27, 2000-Aug. 18, 2004 

FT100     Mar. 3, 1984-Dec. 30, 1999    Jan. 4, 2000-Aug. 18, 2004 

Table 1: The periods of booms and stagnations.  

2.2. Comparisons of the distributions of absolute log returns 

In this paper we investigate the shape of distributions of absolute log returns of the 

stock price indices. We concentrate to compare the shape of the distribution of volatility 

in the period of booms with that in the period of stagnations. We use absolute log return, 

which is a typical measure of volatility. The absolute log returns is defined as |R(t)| = |ln 

S(t) - ln S(t-1)|, where S(t) denotes the index at the date t. We normalize the absolute 

log-return |R(t)| using the standard deviation. The normalized absolute log return V(t) is 

defined as V(t) = |R(t)| /�  where�  denotes the standard deviation of |R(t)|.

Figure 2 (a)-(d) show the semi-log plot of the complementary cumulative distribution 

function of the normalized absolute log-returns V for each of the four stock price indices. 

Each panel compares the distribution of V for an index in the period of booms with that 

in the period of stagnations. The circles represent the distribution in the period of booms 

and triangles that in the period of stagnations. In the all panels it follows that the tail of 

the volatility distribution of V is heavier in the period of booms than in the period of 

stagnations. We shall now look more carefully into the difference between the two 

distributions. To this aim, we attempt to fit the empirical distributions with the two 

specific distributions, that is, an exponential and power-law function below.  

The panels (a)-(h) of Figure 3 show the semi-log plots of the complementary 

cumulative distribution of V for each of the four indices: Nikkei225, DJIA, SP500, and 

FT100 in the period of booms and that in the period of stagnations, respectively. The 

solid lines in all panels represent the fits of the exponential distribution, 

( ) exp( )xP V x
�

� � �                                       (1) 
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where the scale parameter �  is estimated from the data using a least squared method. 

In all cases of the period of stagnations, which are panels (b), (d), (f) and (h), the 

exponential distribution (1) describes very well the distributions of V over a whole 

range of values of V except for only the tow extreme value of V, that is, . In panel (b) the 

Nikkei 225 had one extreme value that occurred on September 28, 1990 in the Japanese 

stock markets and that occurred on September 10, 2001 in US stock markets. The jump 

of Nikkei 225 perhaps was caused by investors’ speculation on the 1990 Gulf War. The 

extreme value of DJIA was caused by terror attack in New York on September 10, 20014.

The scale parameter �  is estimated from the data except for these two extreme values 

using a least squared method is collected in Table 2. In all cases the values of the 

estimated �  are very close to unity.  

Name of Index The scale parameter � 2R

Nikkei 225 1.02 0.995 

DJIA 1.09 0.995 

SP500 0.99 0.997 

FT100 0.99 0.999 

Table 2: The scale parameter � of an exponential function (1) estimated from the data using the 

least squared method. 2R denotes the coefficient of determinant.  

On the other hand the panels (a), (c), (e), and (g) of Figure 3 show the complementary 

cumulative distribution of V in the period of booms for each of the four indices in the 

semi-log plots. The solid lines in all panels represent the fits of the exponential 

distribution estimated from the data of only the low values of V using a least squared 

method. In these cases the low values of V are only approximately well described by the 

exponential distribution (1), but completely fails in describing the large values of V.

                                                  
4 The extreme value does not appear in SP500. We would like to note that this perhaps 
originate in a difference between the calculation methods of the DJIA and the SP 500. In 
DJIA Higher-priced stocks affect the average greater than lower-priced ones, while 
regardless of stock price, a percentage change will be reflected the same on the index in 
SP500. 
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Apparently, an exponential distribution underestimates large values of V.

The panels (a)-(d) of Figure 4 show the complementary cumulative distribution of V 

in the period of stagnations for each of the four indices in the log-log plots. The solid 

lines in all panels represent the best fits of the power-law distribution for the large 

values of V,

( )P V x x ��� � .                                    (2) 

The power-law exponent�  is estimated from the data of the large values of V using the 

least squared method. The best fits succeed in describing approximately large values of 

V. Table 3 collect the power-law exponent�  estimated. The values of the estimated�

are in the range from 2.8 to 3.7.  

Name of Index The power-law exponent� 2R

Nikkei 225 2.83 0.992 

DJIA 3.69 0.995 

SP500 3.26 0.986 

FT100 3.16 0.986 

Table 3: The power-law exponent� of a power-law function (2) estimated from the data using 

the least squared method. 2R denotes the coefficient of determinant.

Finally The panels (a) and (b) of Figure 5 show the complementary cumulative 

distributions of V for the four indices in the period of booms in a semi-log scale, and 

those in the period of stagnations in a log-log scale. The two figures confirm that the 

shape of the fourth volatility distributions in the periods of booms and of stagnations is 

almost the same, respectively.  

 

3. Concluding remarks 
 

In this paper we focus on comparisons of shape of the distributions of absolute log 
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returns in the period of booms with those in the period of stagnations for the four major 

stock price indices. We find that the complementary cumulative distribution in the 

period of booms is very well described by exponential distribution with the scale 

parameter close to unity while the complementary cumulative distribution in the large 

value of the absolute log returns is approximated by power-law distribution with the 

exponent in the range of 2.8 to 3.8. The latter is complete agreement with numerous 

evidences to show that the tail of the distribution of returns and volatility for large 

values of volatility follow approximately a power law with the estimates of the 

exponent�  falling in the range 2 to 4. We are now able to see that the statistical 

properties of volatility for stock price index are changed according to situations of the 

stock markets.  

The question which we must consider next is the reasons why and how the 

differences are created. That traders’ herd behavior may help account for it would be 

accepted by most people. Recently we propose a stochastic model that may offer the 

key to an understanding of the empirical findings we present here. The results of the 

numerical simulation of the model suggest the following: in the period of booms, the 

noise traders' herd behavior strongly influences to the stock market and generate 

power-law tails of the volatility distribution while in the period of stagnations a large 

number of noise traders leave a stock market and interplay with the noise traders 

become weak, so that exponential tails of the volatility distribution is observed (see 

Kaizoji and kaizoji (2003) and Kaizoji (2005)). However it remains an unsettled 

question what causes switching from boom to stagnation.  

Our findings make it clear that we must look more carefully into the relationship 

between regimes of markets and volatility in order to fully understand price fluctuations 

in financial markets. Our findings may provide a starting point to make a new tool of 

risk management of index fund in financial markets, but to apply the rule we show here 

to risk management, we need to establish the framework of analysis and refine the 

statistical methods. We began with a simple observation on the stock price indices, and 

divided the price series into the two periods: booms and stagnations. However, there is 

room for further investigation on how to split the price series into periods according to 

the situations of markets. It is also worth while examining the statistical tools to 

estimate the tail of the volatility distribution more closely and comprehensively. As 
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Malevergne, Pisarenko, and Sornette (2004) have suggested, the log-Weibull model, 

which provides a smooth interpolation between exponential distribution and power-law 

distribution, will be considered as an appropriate approximation of the volatility 

distributions. These studies will be left for future work.  
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------------------------------
Figure Captions 
------------------------------

Figure 1: The movements of the stock price indices: (a) Nikkei 225 (b) DJIA, (c) SP500, 
(d) FT100  

Figure 2: Comparisons of the complementary cumulative distribution of absolute log 
returns V for each of the four stock price indices in the period of booms with that in the 
period of stagnations. The dark blue circles denote the distributions in the period of 
booms, and the pink triangles the distribution in the period of stagnations. The 
distributions are shown in a semi-log scale.  

Figure 3: The panels (a), (c), (e) and (g) indicate the complementary cumulative 
distribution of absolute log returns V for each of the four stock price indices in the 
period of booms, and the panels (b), (d), (f) and (h) indicate that in the period of 
stagnations. These figures are shown in a semi-log scale. The solid lines represent fits of 
the exponential distribution estimated from the data using a least squared method.  

Figure 4: The panels (a), (b), (c) and (d) indicate the complementary cumulative 
distribution of absolute log returns V for each of the four stock price indices in the 
period of booms in a log-log scale. The solid lines represent the best fits of the 
exponential distribution estimated from the data in the large value of V using a least 
squared method.  

Figure 5: The panels (a) and (b) show the complementary cumulative distributions of V 
for the four indices in the period of booms in a semi-log scale, and those in the period of 
stagnations in a log-log scale.  
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Figure 1 

(a) Nikkei 225 (b) DJIA

(c) SP500 (c) FT100
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