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Abstract

This paper makes use of an integrated benchmark modeling framework that allows us to
derive term structure equations for bond and forward prices. The benchmark or numeraire is
chosen to be the growth optimal portfolio (GOP). For deterministic short rate the solution of
the bond term structure equation coincides with the explicit formula obtained in Platen(2005).
The resulting term structure equations are used to explain moves in bond and forward prices by
introducing GOP as a factor and therefore constructing a hedge portfolio for bond consisting
of units of the GOP and the saving account. The paper also derives an affine term structure
equation for forward price in term of the GOP factor. In the case of stochastic short rate we
restrict our selves to give only a term structure equation for the bond price.
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1 Introduction

A rich literature has now emerged to understand what moves interest rate. Understanding what
moves bonds is important for several reasons. One of these reasons is forecasting. Yields on long-
maturity bonds are expected values of average future short yields, at least after an adjustment for
risk. This means that the current yields curve contains information about the future path of the
economy. Monetary policy is a second reason for studying the bond prices. In most industrialized
countries, the central bank seems to be able to move the short maturity of the bond yield curve. For
a given state of the economy, a model of the bond yield curve helps to understand how movements

∗The author acknowledge financial support from “Centre National pour la Recherche Scientifique et Technique,
CNRST”, Morocco. Grant number : a3/014.
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at the short maturity translate into longer-term yields. This involves understanding both how the
central bank conducts policy and how the transmission mechanism works.

Derivative pricing and hedging provide an other reason. For example, coupon bonds are priced
as baskets of coupon payments weighted by the price of a zero-coupon bond that matures on the
coupon date. Banks need to manage the risk of paying short-term interest rates on deposits while
receiving long-term interest rates on loans. Hedging strategies involve contracts that are contingent
on future short rates, such as swap contracts. To compute these strategies, banks need to know
how the price of these derivative securities depends on the state of the economy.

Despite efforts managed to explain what moves interest rates, there is still no commonly ac-
cepted interest rate model. In the literature, the risk neutral pricing formula gives the price of
a zero-coupon bond basing on the dynamics of the short rate, which is a quantity controlled by
the monetary authority. Therefore, bonds are regarded as derivatives of the ”underlying” short
rate. In this paper we derve term structure equations for bond and forward proces especially in
the detereministic short rate case. In our purpose the growth optimal portfolio plays a central role
since the discounted GOP is used as the underlying security and the bond is viewed as a derivative
on the GOP . The dynamic of the GOP is determined by the short rate and the market price of
risk which is the GOP volatility. Unfortunately, volatility does not have a major economic inter-
pretation and is difficult to observe. However, the dynamics of the discounted GOP is uniquely
determined by the net market trend which measures the market activity. So, we prefer to choose
directly the discounted GOP as a factor or underlying security. As a consequence, the resulting
term structure equation is simpler than that of the risk neutral setting, and have an explicit solution
which coincides with the explicit formula obtained in Platen (2006) for deterministic short rate.
Based on the benchmarked forward probability measure introduced in Eddahbi and El Qalli (2008),
the paper also derives a term structure equation for the forward price and shows that the solution
of this equation can be expressed in an affine nature in term of the GOP factor.

The organization of the paper is as follows. Section 2 recalls some results on the benchmark
framework. In section 3 we establish the term structure equation (for deterministic short rate)
for bond price and construct a hedge portfolio for bond price. Section 4 is devoted to derive the
term structure equation for the forward price. The last section is devoted to derive a bond term
structure equation in the case of stochastic short rate.

2 Background on Benchmark Framework

2.1 Security Accounts

We consider a continuous financial market where the uncertainty is modeled by n independent
standard Wiener processes W k = {W k

t , t ∈ [0, T ]}, k ∈ {1, · · · , n}, we note W = {Wt =

2



(W 1
t , . . . , W n

t ), t ∈ [0, T ]} to be the vector of the n wiener processes. These are defined on a
filtered probability space (Ω,FT ,F , P) with finite time horizon T , fulfilling the usual conditions.
The filtration F = (Ft)t∈[0,T ] models the evolution of market information over time, where Ft

denotes the information available at time t ∈ [0, T ].
The market comprises n + 1 primary security accounts. These include a saving account of the

domestic currency S0 = {S0
t , t ∈ [0,∞)}, which is locally riskless primary security account whose

differential equation is given by,

dS0
t = S0

t rtdt (2.1)

for t ∈ [0, T ] with S0
0 = 1. The domestic short rate process r = {rt, t ∈ [0, T ]} characterizes then

the evolution of the time value of the domestic currency.
The market also includes n nonnegative, risky primary security account processes Sj = {Sj

t , t ∈
[0, T ]}, j ∈ {1, 2, . . . , n}, each of which contains units of one type of security and expressed in units
of the domestic currency. This might be, for instance, a cum-dividend share price or the value of
foreign savings account, expressed in units of the domestic currency.

To specify the dynamics of continuous primary securities in the given market, we assume that
Sj

t is the unique solution of the stochastic differential equation

dSj
t = Sj

t

(
aj

tdt +
n∑

k=1

bj,k
t dW k

t

)
(2.2)

for t ∈ [0,∞) with Sj
0 > 0, j ∈ {1, 2, . . . , n}. Here the jth appreciation rate aj

t is the expected
return at time t that an investor receives for holding the jth primary security in the denomination
of the domestic currency. We assume that aj = {aj

t , t ∈ [0, T ]}, j ∈ {1, 2, . . . , n}, is a predictable

process such that
∫ T

0

∑n
j=0 |aj

s|ds <∞ almost surely, for all T ∈ [0,∞).

The j, kth volatility bj,k
t measures at time t the proportional fluctuations of the value of the jth

primary security account with respect to the kth Wiener process. We suppose that bj,k
t is a given

predictable process that satisfies the integrability condition
∫ T

0

∑n
j=1

∑n
k=1

(
bj,k
t

)2

dt < ∞ almost

surely, for all j, k ∈ {1, 2, . . . , n} and T ∈ [0,∞).

2.2 Self-Financing Strategies and Portfolios

In the given continuous financial market one is allowed to form portfolios of primary security
accounts. We call a predictable stochastic process φ = {φt = (φ0

t , . . . , φ
n
t )�, t ∈ [0, T ]} a strategy

if for each j ∈ {0, 1, . . . , n} the Itô integral
∫ t

0
φj

sdSj
s exists and such that the portfolio process

V φ = {V φ
t , t ∈ [0, T ]} is characterized by the linear combination V φ

t =
∑n

j=0 φj
tS

j
t for all t ∈ [0, T ].

Here φj
t is the number of units of the jth primary security account that are held at time t ∈ [0, T ]

in the corresponding portfolio, j ∈ {0, 1, . . . , n}.
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Definition 2.1 A strategy φ and the corresponding portfolio V φ are said to be self-financing if

dV φ
t =

n∑
j=0

φj
tdSj

t (2.3)

for all t ∈ [0, T ].

This means that changes in portfolio value are exactly matched by corresponding gains or losses
from trade in the primary security accounts.
Now, let us introduce the notion of market price of risk. First, we assume that no primary security
account is redundant in the sense that it cannot be expressed as a linear combination of other
primary security accounts. The following assumption avoids redundant primary security accounts.

Assumption 2.2 The volatility matrix [bj,k
t ]nj,k is invertible for Lebesgue-almost every t ∈ [0, T ].

Assumption 2.2 allows us to introduce the kth market price of risk θk
t with respect to the kth

trading uncertainty, which is the kth Wiener process W k, via the equation

θk
t =

n∑
j=1

b−1j,k
t

(
aj

t − rt

)
,

for t ∈ [0, T ] and k ∈ {1, 2, . . . , n}. Then we can rewrite (2.2) for the jth primary security account
in the form

dSj
t = Sj

t

(
rtdt +

n∑
k=1

bj,k
t (θk

t dt + dW k
t )

)

for t ∈ [0, T ] and j ∈ {1, 2, . . . , n}. Note that we have just parameterized (2.2) in terms of the
market price of risk. For a given self-financing strategy φ the value of the corresponding portfolio
V φ

t satisfies the SDE

dV φ
t = V φ

t rtdt +
n∑

k=1

n∑
j=0

φj
tS

j
t b

j,k
t (θk

t dt + dW k
t ) (2.4)

for t ∈ [0, T ].
On the other hand, for a given strategy φ, we introduce the fraction πj

φ,t of the value of a
corresponding strictly positive portfolio, which at time t is invested in the jth primary security

account, that is πj
φ,t = φj

t
Sj

t

V φ
t

for t ∈ [0, T ] and j ∈ {0, 1, . . . , n}. Note that these proportions always

add up to one, that is
∑n

j=0 πj
φ,t = 1 for all t ∈ [0, T ]. Now we can parameterize (2.4) in term of

the fractions to obtain

dV φ
t = V φ

t

(
rtdt +

n∑
k=1

n∑
j=0

πj
φ,tb

j,k
t (θk

t dt + dW k
t )

)

for t ∈ [0, T ].
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2.3 Growth Optimal Portfolio

We now introduce the growth optimal portfolio (GOP) with value V φ∗
t at time t ∈ [0, T ], see Platen

(2006). The GOP is the portfolio that maximizes the expected log-utility E(log(V φ
s )|Ft) from

terminal wealth for all t ∈ [0, s] and s ∈ [0, T ]. Its strategy φ∗ = {φ∗t = (φ0
∗t, φ

1
∗t, . . . , φ

n
∗t)
�, t ∈

[0, T ]} follows directly from solving the first order condition for log-utility maximization problem.
The resulting GOP satisfies the SDE

dV φ∗
t = V φ∗

t

(
rtdt +

n∑
k=1

θk
t (θ

k
t dt + dW k

t )

)

for t ∈ [0, T ], see platen (2006). Obviously the GOP is uniquely determined up to its initial value
V φ∗

0 , and its dynamics is fully characterized by the market price for risk θk
t , k ∈ {1, 2, . . . , n}, and

the short rate rt for t ∈ [0, T ]. It can seen that the volatilities θk
t , k ∈ {1, 2, . . . , n}, of the GOP

are the corresponding market price of risk. This structure of the GOP is of crucial importance for
understanding the typical dynamics of the market.

Now, the discounted GOP is defined by V̄ φ∗
t =

V φ∗
t

S0
t

, the corresponding dynamics are

dV̄ φ∗
t = V̄ φ∗

t |θt|
(
|θt|dt + dŴt

)
where |θt|2 = θtθ

�
t is the risk premium of the GOP which is the square of the total market price of

risk, and dŴt =
1

|θt|
n∑

k=1

θk
t dW k

t .

Note that by discounting the GOP by the saving account we have separated the impact of the short
rate from that of the market price of risk

The discounted GOP drift αt at time t ∈ [0, T ], which we also refer to as Net Market Trend, is
of the form

αt = V̄ φ∗
t |θt|2

this leads to

|θt| =
√

αt

V̄ φ∗
t

and

dV̄ φ∗
t = αtdt +

√
αtV̄

φ∗
t dŴt. (2.5)

We emphasize that αt is an observable financial quantity. Similar to volatility it measures market
activity. We note also that the parameter process α = {αt, t ∈ [0,∞)} can be freely specified as a
predictable stochastic process such that the SDE (2.5) has a unique strong solution. Furthermore,
it is important to realize that (2.5) describes the SDE of a time transformed squared Bessel process
of dimension four. For more details see Platen and Heath (2006).
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2.4 Fair Pricing

In principle, one has the freedom to choose any strictly positive numeraire or benchmark as reference
unit. Throughout the following we use the GOP as numeraire. The choice of the GOP as numeraire
has important advantages over alternatives, because this is the only choice, where it is not necessary
to perform a measure transformation when pricing derivatives in incomplete market that has an
equivalent risk neutral martingale measure, see Long (1990).
For a portfolio V φ we introduce its benchmarked portfolio

V̂ φ
t =

V φ
t

V φ∗
t

at time t ∈ [0, T ]. By application of the Itô formula the benchmarked portfolio V̂ φ
t satisfies the

SDE

V̂ φ
t =

n∑
k=1

n∑
j=0

φj
t Ŝ

j
t (b

j,k
t − θk

t )dW k
t

where Ŝj
t =

Sj
t

V φ∗
t

for t ∈ [0, T ].

Now, we introduce a general framework than what is provided by standard risk neutral approach,
see Platen and Heath (2006). By using conditional expectations with respect to the real world
probability measure P we introduce the following concept of fair pricing.

Definition 2.3 A price process U = {Ut, t ∈ [0, T ]}, with E
(
|Ut|
V φ∗

t

)
< ∞ for t ∈ [0, T ], is called

fair if the corresponding benchmarked price process Û = {Ût = Ut

V φ∗
t

, t ∈ [0, T ]}, forms an (F , P )-

martingale, that is

Ût = E(Ûs|Ft) (2.6)

for 0 < t ≤ s ≤ T .

Consequently, for a fair price process its last observed benchmarked value is the best forecast of
any of its future benchmarked values.

In this setting let us define a contingent claim HT that matures at T as an FT -measurable payoff

with E
(
|HT |
V φ∗

T

)
<∞ for all t ∈ [0, T ]. In order to value this contingent claim, a corresponding price

process UHT = {UHT
t , t ∈ [0, T ]} must satisfy the condition UHT

T = HT at T . By the martingale
property (2.6) the contingent claim price UHT

t of HT , when expressed in units of the domestic
currency, is at time t ∈ [0, T ] obtained by the fair pricing formula

UHT
t = V φ∗

t E

(
UHT

T

V φ∗
T

|Ft

)
(2.7)

for t ∈ [0, T ].
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2.5 Zero Coupon Bond and Actuarial Pricing

If the maturity date T is fixed and the payoff equals one unit of the domestic currency, then we
obtain by the fair pricing formula (2.7) the price p(t, T ) of a corresponding zero-coupon bond at
time t ∈ [0, T ]. This price is given by the equation

p(t, T ) = V φ∗
t E

(
1

V φ∗
T

|Ft

)

the corresponding benchmarked zero-coupon bond price

p̂(t, T ) =
p(t, T )

V φ∗
t

= E

(
1

V φ∗
T

|Ft

)
(2.8)

for t ∈ [0, T ]. The benchmarked zero-coupon bond price process p̂(·, T ) = {p̂(t, T ), t ∈ [0, T ]} is
then an (F , P )-martingale. So, it is reasonable to assume that there exists for each t ∈ [0, T ] and
k ∈ {1, 2, . . . , n} a unique predictable kth benchmarked bond volatility σk(t, T ) such that

dp̂(t, T ) = p̂(t, T )
n∑

k=1

σk(t, T )dW k
t (2.9)

which is equivalent to

dp̂(t, T ) = p̂(t, T )σ(t, T )dWt (2.10)

where σ(t, T ) = (σ1(t, T ), . . . , σn(t, T )) and thus

p̂(t, T ) = p̂(0, T ) exp

{
−

n∑
k=1

(∫ t

0

(σk(s, T ))2

2
ds−

∫ t

0

σk(s, T )dW k
t

)}
(2.11)

for each t ∈ [0, T ], then we obtain via the Itô formula

dp(t, T ) = p(t, T )

(
rtdt +

n∑
k=1

(θk
t − σk(t, T ))[θk

t dt + dW k
t )]

)
. (2.12)

We assume now that the short rate rt is deterministic. The fair pricing formula leads to

p(t, T ) = V φ∗
t E

(
1

V φ∗
T

|Ft

)
= exp

{
−
∫ T

t

rsds

}
E

(
V̄ φ∗

t

V̄ φ∗
T

|Ft

)
. (2.13)

By using the first negative moment of a squared Bessel process of dimension of dimension four (see
Platen & Heath (2006)) we have

E
(
(V̄ φ∗

T )−1|Ft

)
= (V̄ φ∗

t )−1

(
1− exp

{
− V̄ φ∗

t∫ T

t
αs

2
ds

})
. (2.14)
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Therefore, we obtain the Platen’s explicit formula (see Platen & Heath (2006)) for the zero-coupon
bond

p(t, T ) = exp

(
−
∫ T

t

rsds

)(
1− exp

{
− V̄ φ∗

t∫ T

t
αs

2
ds

})
(2.15)

Note that we have supposed that rt is deterministic. But we should prove later that this result
remains true for stochastic short rates.

Now, let us consider at the fixed maturity date T a random FT -measurable payoff H > 0, which
is independent of the GOP value V φ∗

T . For instance, this could be life insurance claim or a payoff
based on a weather index. Such a claim may be independent of the GOP. To be precise, we assume

that the expectation of the benchmarked payoff E
(∣∣∣ H

V φ∗
T

∣∣∣) < ∞ is finite. According to the fair

pricing formula and using the fact that H is independent of V φ∗
T we have

UH
t = V φ∗

t E

(
H

V φ∗
T

∣∣∣∣∣Ft

)
= V φ∗

t E

(
1

V φ∗
T

∣∣∣∣∣Ft

)
E (H| Ft) .

By using now the fair zero-coupon bond price p(t, T ), it follows the widely used actuarial pricing
formula

UH
t = p(t, T )E (H| Ft) .

Under this formula one computes the conditional expectation of a future cash flow at time T and
discounts it back to the present time t by using the corresponding fair zero-coupon bond price.
This takes into account the evolution of the time value of money.

3 Bond Price Term Structure Equation in Term of GOP:

Deterministic Short rate Case

In this section we view the bond price as derivative of the GOP. In contrast to the risk neutral
setting where a natural starting point is to give an a prior specification of the dynamics of the
short interest rate, the advantage here is the fact that the dynamics of the GOP are uniquely
determined by (2.5). Second, in the risk neutral setting the number of exogenously given traded
assets excluding the risk free asset equals zero, whereas the number of random source equals more
than one. So, the market in the risk neutral setting is expected to be arbitrage free but note
complete. Here, we have to explain the bond price by the GOP which is a risky portfolio. So, in
the benchmark framework we have to work under a “Complete” Zero-Coupon Bond Market. To
make this idea more correct we set the following assumption

8



Assumption 3.1 We assume that for every T , the price of a zero-coupon bond price has the form

p(t, T ) = Hp(t, V̄
φ∗
t , T ) (3.16)

and the net market trend has the form

αt = ᾱ(t, V̄ φ∗
t ) (3.17)

where Hp is a smooth function of the three real variables, and ᾱ is sufficiently smooth function.

At the time of maturity a zero-coupon bond is of course worth exactly $1, so we have the relation

Hp(T, v, T ) = 1 for all v.

Assumption 3.1 implies we want to explain moves in the zero-coupon bond only by the source of
randomness described by the discounted GOP V̄ φ∗

t . Consequently, Assumption 3.1 forces the short
rate to be deterministic. Now, from Assumption 3.1 and the Itô formula we get the following price
dynamics for the zero-coupon bond.

Proposition 3.1 Suppose the zero-coupon bond price satisfies Assumption (3.1). Then Hp satisfies
the term structure equation ⎧⎪⎨

⎪⎩
∂Hp

∂t
+

1

2
αtv

∂2Hp

∂v2
= rtHp

Hp(T, v, T ) = 1

(3.18)

Proof. Applying Itô formula to Equation (3.16) and using the GOP dynamics (2.5) we get the
dynamics of the zero-coupon bond price under the real world probability P as follows

dp(t, T ) =

{
∂Hp

∂t
+ αt

∂Hp

∂v
+

1

2
αtV̄

φ∗
t

∂2Hp

∂v2

}
dt +

∂Hp

∂v

√
αtV̄

φ∗
t dŴt. (3.19)

Note that the zero-coupon is not martingale under the real world probability. However, the mar-
tingale property holds for the benchmarked zero-coupon bond. So, applying the Itô formula to
benchmarked zero-coupon (2.8) we get

dp̂(t, T ) = d

(
p(t, T )

V φ∗
t

)
= d

(
Hp(t, V̄

φ∗
t , T )

V φ∗
t

)

= Hp(t, V̄
φ∗
t , T )d

(
1

V φ∗
t

)
+

1

V φ∗
t

dHp(t, V̄
φ∗
t , T )

+

〈
Hp(·, V̄ φ∗· , T ),

1

V φ∗·

〉
t

.
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On the other hand we have

d

(
1

V φ∗
t

)
= − 1

V φ∗
t

[
rtdt + |θt|dŴt

]
and therefore

d

〈
Hp(·, V̄ φ∗· , T ),

1

V φ∗·

〉
t

= −∂Hp

∂v

|θt|
V φ∗

t

√
αtV̄

φ∗
t dt = −∂Hp

∂v

αt

V φ∗
t

dt

where 〈·, ·〉t denotes the quadratic variation. Hence, the benchmarked zero-coupon bond becomes

dp̂(t, T ) = − Hp

V φ∗
t

[
rtdt + |θt|dŴt

]
+

1

V φ∗
t

[
∂Hp

∂t
+ αt

∂Hp

∂v
+

1

2
αtV̄

φ∗
t

∂2Hp

∂v2

]
dt

+

{
1

V φ∗
t

∂Hp

∂v

√
αtV̄

φ∗
t

}
dŴt − ∂Hp

∂v

αt

V φ∗
t

dt

=
1

V φ∗
t

{
−Hprt +

∂Hp

∂t
+

1

2
αtV̄

φ∗
t

∂2Hp

∂v2

}
dt

+
1

V φ∗
t

{
∂Hp

∂v

√
αtV̄

φ∗
t −Hp|θt|

}
dŴt

and the result follows from the fact that the benchmarked zero-coupon bond with maturity T is
martingale under the real world probability measure P , so its drift term must be zero.

Now, taking partial derivatives for (2.15) with respect to (t, v) ∈ (0, T )× (0,∞) we get

∂p(t, T )

∂t
= rtp(t, T ) +

(
exp

{
−
∫ T

t

rsds

}
− p(t, T )

)
V̄ φ∗

t
αt

2(∫ T

t
αs

2
ds
)2 (3.20)

∂2p(t, T )

∂v2
=

(
exp

{
−
∫ T

t

rsds

}
− p(t, T )

) −1(∫ T

t
αs

2
ds
)2 . (3.21)

Multiplying equation (3.21) by 1
2
αtv and adding it to (3.20) we get

p(t, T ) = Hp(t, V̄
φ∗
t , T ) = exp

{
−
∫ T

t

rsds

}(
1− exp

{
− V̄ φ∗

t∫ T

t
αs

2
ds

})

Proposition 3.2 The explicit Platen’s formula (2.15) given by

p(t, T ) = Hp(t, V̄
φ∗
t , T ) = exp

{
−
∫ T

t

rsds

}(
1− exp

{
− V̄ φ∗

t∫ T

t
αs

2
ds

})
(3.22)

solves the term structure equation (5.44).
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3.1 Hedging Zero-Coupon Bond by the GOP

Our aim is to construct a self-financing hedge portfolio consisting of φ0
t units of the saving account

S0
t and φ1

t units of the GOP V φ∗
t such that the value of that portfolio V φ

t equals to the price of the
zero-coupon bond i.e.

V φ
t = p(t, T ) = Hp(t, V̄

φ∗
t , T ).

According to (5.46) and the term structure equation (5.44) we have

dp(t, T ) =

{
rtHp + αt

∂Hp

∂v

}
dt +

∂Hp

∂v

√
αtV̄

φ∗
t dŴt. (3.23)

On the other hand

V φ
t = φ0

t S
0
t + φ1

t V
φ∗
t = φ0

0S
0
0 + φ1

0V
φ∗
0 +

∫ t

0

φ0
sdS0

s +

∫ t

0

φ1
sdV φ∗

s

and

dV φ∗
t = d(V̄ φ∗

t S0
t ) = V̄ φ∗

t S0
t rtdt + S0

t dV̄ φ∗
t

which give an other expression for p(t, T )

dp(t, T ) = dV φ
t = φ0

t rtS
0
t dt + φ1

t dV φ∗
t

= φ0
t rtS

0
t dt + φ1

t

[
V̄ φ∗

t S0
t rtdt + S0

t dV̄ φ∗
t

]
=

{[
φ0

t + φ1
t V̄

φ∗
t

]
rtS

0
t + αtS

0
t φ

1
t

}
dt + φ1

t S
0
t

√
αtV̄

φ∗
t dŴt. (3.24)

Comparing Equations (3.23) and (3.24) we get

φ1
t S

0
t

√
αtV̄

φ∗
t =

∂Hp

∂v

√
αtV̄

φ∗
t[

φ0
t + φ1

t V̄
φ∗
t

]
rtS

0
t + αtS

0
t φ

1
t = rtHp + αt

∂Hp

∂v
.

It follows that

φ1
t =

1

S0
t

∂Hp

∂v

φ0
t =

1

S0
t

[
Hp − ∂Hp

∂v
V̄ φ∗

t

]

substituting the expression of Hp from (3.22), we have the following explicit formula for φ1
t

φ1
t =

1

S0
t

∂Hp

∂v
=

exp
{
− ∫ T

0
rsds

}
∫ T

t
αs

2
ds

exp

{
− V̄ φ∗

t∫ T

t
αs

2
ds

}
.
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Furthermore from (3.22) we have

∂Hp

∂v
=

exp
{
− ∫ T

t
rsds

}
−Hp∫ T

t
αs

2
ds

so that we can rewrite φ0
t as

φ0
t = exp

{
−
∫ t

0

rsds

}[
Hp − V̄ φ∗

t

{∫ T

t
rsds−Hp∫ T

t
αs

2
ds

}]

= exp

{
−
∫ t

0

rsds

}[
p(t, T )− V̄ φ∗

t

{∫ T

t
rsds− p(t, T )∫ T

t
αs

2
ds

}]
.

Now, with the quantity

At = A0 +

∫ t

0

αsds

we can rewrite φ1
t , φ2

t and the zero-coupon bond to get the following explicit formulae

φ1
t =

exp
{
− ∫ T

0
rsds

}
AT−At

2

exp

{
− V̄ φ∗

t
AT−At

2

}

φ0
t = exp

{
−
∫ t

0

rsds

}[
p(t, T )− V̄ φ∗

t exp

{∫ T

t
rsds− p(t, T )

AT−At

2

}]

p(t, T ) = exp

{
−
∫ T

t

rsds

}(
1− exp

{
− V̄ φ∗

t
AT−At

2

})
.

Here, At can be interpreted as the underlying value at time t of the discounted GOP, where A0

needs to be appropriately chosen as the initial underlying value at time t = 0. One can say that
the underlying value At corresponds to the discounted wealth that underlies the discounted index
V̄ φ∗

t .
The advantage here i.e. in the benchmark framework is the fact that we try to understand what
moves bond term structure with respect to its underlying economic conjecture. In fact, we have
written the bond price as a function of the discounted GOP V̄ φ∗

t which is learned to be a discounted
market index, At which corresponds to the discounted wealth that underlies the discounted index,
and of course the short rate which in an other economic source of randomness controlled by the
central bank or monetary authority.

12



4 Forward Price Term Structure Equation in Term of GOP:

Case of Deterministic Short Rate

A forward contract is an agreement, established at the date t < T , to pay or receive on settlement
date T a preassigned payoff, say H, at an agreed forward price. Let us emphasize that there is no
cash flow at the contract’s initiation and the contract is not marked to market. We may assume,
without loss of generality, that a forward contract is settled by cash on date T . Therefore, a forward
contract written at time t with the underlying contingent claim H and prescribed settlement date
T may be summarized by the following two basic rules : (a) a cash amount H will be received at
time T , and a preassigned amount FH(t, T ) of cash will be paid at time T ; (b) the amount FH(t, T )
should be predetermined at time t (according to the information available at this time) in such
a way that the price of the forward contract at time t is zero. In fact, since nothing is paid up
front, it is natural to admit that the forward contract is worthless at its initiation. We adopt the
following formal definition of a forward contract.

Definition 4.1 Let us fix 0 ≤ t ≤ T . A forward contract written at time t on a time T contingent
claim H is represented by the time T contingent claim GT = H−FH(t, T ) that satisfies the following
conditions :

1. FH(t, T ) is a Ft-measurable random variable;

2. the fair price at time t of a contingent claim GT equals zero.

The random variable FH(t, T ) is referred to as the forward price of a contingent claim H at time t
for the settlement date T . The contingent claim H may be defined in particular as a preassigned
amount of the underlying financial asset to be delivered at the settlement date. For instance, if the
underlying asset of forward contract is a given portfolio V φ issued from a given strategy φ, then
clearly H = V φ

T . The following result expresses the forward price of a contingent claim H in terms
of its fair price UH

t and the price p(t, T ) of a zero-coupon bond which matures at time T .

Proposition 4.1 The forward price FH(t, T ) at time t ≤ T , for the settlement date T , of a con-
tingent claim H equals

FH(t, T ) =
UH

t

p(t, T )
(4.25)

Proof. By the fair pricing formula (2.7) we have

0 = V φ∗
t E

(
GT

V φ∗
T

∣∣∣∣∣Ft

)
= V φ∗

t E

(
H − FH(t, T )

V φ∗
T

∣∣∣∣∣Ft

)

by using the fair zero-coupon bond price and the fair pricing formula it follows the forward price

FH(t, T ) =
V φ∗

t E
(

H

V φ∗
T

∣∣∣Ft

)
V φ∗

t E
(

1

V φ∗
T

∣∣∣Ft

) =
UH

t

p(t, T )
.
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In the case when the underlying asset of the forward contract is a given fair portfolio V φ issuing
from a given strategy φ we have the following forward price

FV φ
T
(t, T ) =

V φ
t

p(t, T )

for t ∈ [0, T ].
Note that, if H is independent to V φ∗

T then from the actuarial pricing formula we have FH(t, T ) =
E(H|Ft). Hence, the forward price is an (F , P )-martingale, that is, the forward price is the best
forecast of the future value H. The question which arises now is; what happens if H is not necessary
independent of V φ∗

T ? to answer this question we need to introduce the notion of Benchmarked
forward probability measure.

4.1 Benchmarked Forward Probability Measure

According to our knowledge, within the framework of arbitrage valuation of interest rate derivatives,
the method of a forward risk adjustment was pioneered under the name of a forward risk-adjusted
process by Jamshidian (1987). The formal definition of a forward probability measure was explic-
itly introduced in Geman (1989) under the name of forward neutral probability. In particular,
Geman observed that the forward price of any financial asset follows a (local) martingale under the
forward neutral probability associated with the settlement date of a forward contract. For further
developments of the forward measure approach, we refer the reader in particular, to El Karoui et
al. (1995).

Definition 4.2 A probability measure PT on (Ω,FT ) equivalent to P , with the Radon-Nikodym
derivative given by the formula:

dPT

dP
=

V φ∗
0

V φ∗
T p(0, T )

is called the benchmarked forward martingale measure for the settlement date T .

Notice that the above Radon-Nikodym derivative, when restricted to the σ-field Ft satisfies for
every t ∈ [0, T ]

ηt
def
=

dPT

dP |Ft

= E

(
V φ∗

0

V φ∗
T p(0, T )

∣∣∣∣∣Ft

)
=

V φ∗
0 p(t, T )

V φ∗
t p(0, T )

.

Now, by using equations (2.8) and (2.11), we obtain

ηt =
p̂(t, T )

p̂(0, T )
= exp

{
−

n∑
k=1

(∫ t

0

(σk(s, T ))2

2
ds−

∫ t

0

σk(s, T )dW k
t

)}
.
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Furthermore, the processes

W k,T
t = W k

t −
∫ t

0

σk(s, T )ds, k = 1, . . . , n (4.26)

or in vectoriel form

W T
t = Wt −

∫ t

0

σ(s, T )ds (4.27)

for all t ∈ [0, T ], follow a standard Brownian motion under the benchmarked forward measure PT .
The next result shows that the forward price of contingent claim H which settles at time T

can be easily expressed in terms of the conditional expectation under the benchmarked forward
measure PT . Denote EPT

the expectation under PT .

Proposition 4.2 The forward price at t for the date T of a contingent claim H which settles at
time T equals

FH(t, T ) = EPT
(H|Ft) (4.28)

provided that H is PT integrable. In particular the forward price process FH(t, T ), t ∈ [0, T ], follows
a martingale under the benchmarked forward measure PT .

Proof. The Bayes rule yields

EPT
[H|Ft] =

E[ηT H|Ft]

E[ηT |Ft]
= E[ηT η−1

t H|Ft] =
V φ∗

t

p(t, T )
E[

H

V φ∗
T

|Ft]

=
V φ∗

t

p(t, T )

UH
t

V φ∗
t

=
UH

t

p(t, T )

If the underlying asset of a forward contract is a given fair portfolio V φ, then clearly FH(t, T ) =
EPT

[V φ
T |Ft]. The next proposition establishes a version of the actuarial pricing formula that is

tailored to any contingent claim although it is not independent of the GOP V φ∗ .

Proposition 4.3 The fair price of any contingent claim H which settles at time T is given by the
following version of the actuarial pricing formula

UH
t = p(t, T )EPT

[H|Ft] (4.29)

Proof. Equality (4.29) is an immediate consequence of (4.25) combined with (4.28). For a more
direct proof, note that the fair price UH

t can be reexpressed as follows

UH
t = V φ∗

t E[
H

V φ∗
T

|Ft] = V φ∗
t

p(0, T )

V φ∗
0

E[ηT H|Ft].
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An application of the Bayes rule yields

UH
t = V φ∗

t

p(0, T )

V φ∗
0

EPT
[H|Ft]E[ηT |Ft] = V φ∗

t

p(0, T )

V φ∗
0

EPT
[H|Ft]E[

V φ∗
0

V φ∗
T P (0, T )

|Ft]

= V φ∗
t E[

1

V φ∗
T

|Ft]EPT
[H|Ft] = p(t, T )EPT

[H|Ft]

4.2 The forward price term structure equation

Modeling the entire term structure of forward prices also results in an infinite dimensional state
variable. Therefore it is sometimes more convenient to model a given finite dimensional state
process, and to assume that forward prices are given as functions of this state process. Similarly
to the bond price, we choose the GOP as a factor and we explain moves on the forward price by
the GOP dynamics.

Assumption 4.3 We assume that for every T , the forward price can be written in the following
form

f(t, T ) = Hf (t, V̄
φ∗
t , T ) (4.30)

and the net market trend has the form

αt = ᾱ(t, V̄ φ∗
t ) (4.31)

where Hf is a smooth function of the three real variables with the boundary condition

Hf (T, v, T ) = hf (T, v)

for all v and for an a priori given function hf and ᾱ is sufficiently smooth function.

Similarly the short rate in this case is deterministic.

Proposition 4.4 Suppose the forward price satisfies Assumption (4.3). Then Hf satisfies the
following term structure equation⎧⎪⎨

⎪⎩
∂Hf

∂t
+ αt

∂Hf

∂v
+

1

2
αtv

∂2Hf

∂v2
+

∂Hf

∂v

∂Hp

∂v
αtv = 0

Hf (T, v, T ) = hf (T, v).

(4.32)
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Proof. Applying Itô formula to Equation (4.30) and using the GOP dynamics (2.5) we get the
dynamics of the forward price under the real world probability P as follows

dHf (t, V̄
φ∗
t , T ) =

{
∂Hf

∂t
+ αt

∂Hf

∂v
+

1

2
αtV̄

φ∗
t

∂2Hf

∂v2

}
dt +

∂Hf

∂v

√
αtV̄

φ∗
t dŴt. (4.33)

Using the dynamics under P and noting that in this case the bond prices volatility is given by

σk(t, T ) =
∂Hp

∂v

√
αtV̄

φ∗
t

θk
t

|θt|
we can change to the PT measure using

dW k,T
t = dW k

t − σk(t, T )dt

and therefore

dŴt =
1

|θt|
n∑

k=1

θk
t dW k

t

=
1

|θt|
n∑

k=1

θk
t

(
dW k,T

t +
∂Hp

∂v

√
αtV̄

φ∗
t

θk
t

|θt|dt

)

=
1

|θt|
n∑

k=1

θk
t dW k,T

t +
∂Hp

∂v

√
αtV̄

φ∗
t dt

= dŴ T
t +

∂Hp

∂v

√
αtV̄

φ∗
t dt

where

dŴ T
t =

1

|θt|
n∑

k=1

θk
t dW k,T

t .

The dynamics under the benchmarked forward measure PT of f(t, T ) become

dHf (t, V̄
φ∗
t , T ) =

{
∂Hf

∂t
+ αt

∂Hf

∂v
+

1

2
αtV̄

φ∗
t

∂2Hf

∂v2
+

∂Hf

∂v

∂Hp

∂v
αtV̄

φ∗
t

}
dt

+
∂Hf

∂v

√
αtV̄

φ∗
t dŴ T

t

and the result follows from the fact that the forward prices with maturity T are martingales under
the benchmarked forward measure PT , so its drift term must be zero.

Definition 4.4 The term structure of the forward price is said to be affine if the function Hf from
(4.30) is of the following form

ln Hf (t, v, T ) = Af (t, T ) + Bf (t, T )v (4.34)

where Af and Bf are deterministic functions.
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Proposition 4.5 Suppose that Assumption 4.3 is in force and that the function h is of the following
form

ln h(T, v) = c(T ) + d(T )v

Then the term structure of the forward price is affine, that is Hf from (4.30) can be written on the
form (4.34) where Af and Bf are given by

Bf (t, T ) = d(T )e
R T

t αs
∂Hp(s,v,T )

∂v
ds

(
1− d(T )

∫ T

t

1

2
αue

R T
u αs

∂Hp(s,v,T )

∂v
dsdu

)−1

(4.35)

and

At(t, T ) = c(T ) +

∫ T

t

αsBf (s, T )ds. (4.36)

Proof. We need to show that Hf (t, v, T ) from (4.34) where Af and Bf are given by (4.35) and
(4.36), solves the PDE (14) that uniquely characterizes the bond prices in this setting.
Taking partial derivatives

∂Hf

∂t
=

[
∂Af

∂t
+

∂Bf

∂t
v

]
Hf

∂2Hf

∂v2
= B2

fHf

so the equation (4.32) reduces in this case to⎧⎪⎨
⎪⎩

∂Af (t, T )

∂t
+ αtBf (t, T ) = 0

Af (T, T ) = c(T ).

(4.37)

and ⎧⎪⎨
⎪⎩

∂Bf (t, T )

∂t
+

1

2
αtB

2
f (t, T ) + αt

∂Hp

∂v
Bf (t, T ) = 0

Bf (T, T ) = d(T ).

(4.38)

Equation (4.38) is a Bernoulli differential equation with solution given by

Bf (t, T ) = d(T )e
R T

t αs
∂Hp(s,v,T )

∂v
ds

(
1− d(T )

∫ T

t

1

2
αue

R T
u αs

∂Hp(s,v,T )

∂v
dsdu

)−1

and

Af (t, T ) = c(T ) +

∫ T

t

αsBf (s, T )ds
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Remark 4.5 Since we have

∂Hp(t, V̄
φ∗
t , T )

∂v
= exp

{
−
∫ T

t

rsds

}
1∫ T

t
αs

2
ds

exp

{
− V̄ φ∗

t∫ T

t
αs

2
ds

}

the above proposition gives an explicit formula to the forward price in term of the GOP V̄ φ∗
t , the

net market trend αt and the short interest rate rt.

4.3 Hedging Forward price by the GOP

In this subsection we construct a self-financing hedge portfolio consisting of π0
t units of the saving

account S0
t and π1

t units of the GOP V φ∗
t such that the value of that portfolio V π

t equals to the
forward price i.e.

V π
t = p(t, T ) = Hf (t, V̄

φ∗
t , T ).

According to (4.33) and the term structure equation (4.32) we have

dHf (t, V̄
φ∗
t , T ) =

{
−∂Hf

∂v

∂Hp

∂v
αtV̄

φ∗
t

}
dt +

∂Hp

∂v

√
αtV̄

φ∗
t dŴt. (4.39)

On the other hand

V π
t = π0

t S
0
t + π1

t V
φ∗
t = π0

0S
0
0 + π1

0V
φ∗
0 +

∫ t

0

π0
sdS0

s +

∫ t

0

π1
sdV φ∗

s

and

dV φ∗
t = d(V̄ φ∗

t S0
t ) = V̄ φ∗

t S0
t rtdt + S0

t dV̄ φ∗
t

which give an other expression for Hf (t, V̄
φ∗
t , T )

dHf (t, V̄
φ∗
t , T ) = dV π

t

=
{[

π0
t + π1

t V̄
φ∗
t

]
rtS

0
t + αtS

0
t π

1
t

}
dt + π1

t S
0
t

√
αtV̄

φ∗
t dŴt. (4.40)

Comparing Equations (4.39) and (4.40) we get

π1
t S

0
t

√
αtV̄

φ∗
t =

∂Hf

∂v

√
αtV̄

φ∗
t[

π0
t + π1

t V̄
φ∗
t

]
rtS

0
t + αtS

0
t π

1
t = −∂Hf

∂v

∂Hp

∂v
αtV̄

φ∗
t .
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It follows that

π1
t =

1

S0
t

∂Hf

∂v

π0
t =

1

S0
t

[
V̄ φ∗

t +
αt

rt

(
1 +

∂Hp

∂v
V̄ φ∗

t

)]
∂Hf

∂v
.

Note that in the case of affine term structure for forward price we can get an explicit formulae for
π0 and π1 since

∂Hf

∂v
and ∂Hp

∂v
can be expressed explicitly by

∂Hf

∂v
= Bf (t, T )Hf

and

∂Hp

∂v
=

exp
{
− ∫ T

t
rsds

}
−Hp∫ T

t
αs

2
ds

.

5 Bond Price Term Structure Equation in Term of GOP

and Stochastic Short rate

In this section we view the bond price as “derivative” of the GOP and the short rate. Although
the GOP dynamics are uniquely determined, we are forced to give an a prior specification of the
dynamics of the short interest rate. According to Platen and Heath (2006) (see formula (10.4.17))
we choose the following dynamics for the short interest rate

drt =

[
μt +

d∑
k=1

βk
t θk

t

]
dt +

d∑
k=1

βk
t dW k

t (5.41)

where μt and βk
t , k = 1, . . . , d, are sufficiently regular processes.

Assumption 5.1 We assume that for every T , the price of a zero-coupon bond price has the form

p(t, T ) = H̃p(t, rt, V̄
φ∗
t , T ) (5.42)

and the net market trend is of the form

αt = ᾱ(t, V̄ φ∗
t ) (5.43)

where H̃p is a smooth function of the four real variables, and ᾱ is sufficiently smooth function.
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At the time of maturity T we have

H̃p(T, r, v, T ) = 1 for all v and r.

In this case moves in the zero-coupon bond are described by the discounted GOP V̄ φ∗
t and the short

rate rt. Now, from Assumption 5.1 and the Itô formula we get the following price dynamics for the
zero-coupon bond.

Proposition 5.1 Suppose the zero-coupon bond price satisfies Assumption (5.1). Then H̃p satisfies
the term structure equation⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂H̃p

∂t
+ μt

∂H̃p

∂r
+

1

2

d∑
k=1

(
βk

t

)2 ∂2H̃p

∂r2
+

1

2
αtv

∂2H̃p

∂v2
+

1

2
v

d∑
k=1

θk
t β

k
t

∂2H̃p

∂v∂r
= rH̃p

H̃p(T, r, v, T ) = 1

(5.44)

Proof. First, we note that the GOP dynamics of can be rewritten as

dV̄ φ∗
t = αtdt + V̄ φ∗

t

d∑
k=1

θk
t dW k

t . (5.45)

Applying Itô formula to (5.42) and using GOP dynamics (5.45) and short rate dynamics (5.41) we
get the dynamics of the zero-coupon bond price under the real world probability P as follows

dp(t, T ) =

{
∂H̃p

∂t
+ αt

∂H̃p

∂v
+

[
μt +

d∑
k=1

βk
t θk

t

]
∂H̃p

∂r
+

1

2
αtV̄

φ∗
t

∂2H̃p

∂v2
+

1

2

d∑
k=1

(βk
t )2∂2H̃p

∂r2

+
1

2
V̄ φ∗

t

d∑
k=1

θk
t β

k
t

∂2H̃p

∂v∂r

}
dt +

d∑
k=1

[
V̄ φ∗

t θk
t

∂H̃p

∂v
+ βk

t

∂H̃p

∂r

]
dW k

t . (5.46)

On the other hand we have

dp̂(t, T ) = d

(
p(t, T )

V φ∗
t

)
= d

(
H̃p(t, rt, V̄

φ∗
t , T )

V φ∗
t

)

= H̃p(t, rt, V̄
φ∗
t , T )d

(
1

V φ∗
t

)
+

1

V φ∗
t

dH̃p(t, rt, V̄
φ∗
t , T )

+

〈
H̃p(·, r·, V̄ φ∗· , T ),

1

V φ∗·

〉
t

.

and

d

(
1

V φ∗
t

)
= − 1

V φ∗
t

[
rtdt +

d∑
k=1

θk
t dW k

t

]
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where 〈·, ·〉t denotes the quadratic variation. Hence, the benchmarked zero-coupon bond dynamics
become

dp̂(t, T ) =
1

V φ∗
t

{
−rtH̃p +

∂H̃p

∂t
+ μt

∂H̃p

∂r
+

1

2

d∑
k=1

(
βk

t

)2 ∂2H̃p

∂r2
+

1

2
αtV̄

φ∗
t

∂2H̃p

∂v2

+
1

2
V̄ φ∗

t

d∑
k=1

θk
t β

k
t

∂2H̃p

∂v∂r

}
dt +

1

V φ∗
t

d∑
k=1

[
−H̃pθ

k
t +

∂Hp

∂v
V̄ φ∗

t θk
t + βk

t

∂H̃p

∂r

]
dW k

t

and the result follows from the fact that the benchmarked zero-coupon bond with maturity T is
martingale under the real world probability measure P , so its drift term must be zero.
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