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Abstract

Reliability has been largely applied to industrial systems in order to study
the various possibilities of sytems’ failure. The goal is to establish the chain
of events leading to any system’s failure, namely the top event. Looking for
the minimal paths leading to any system’s fault allows for a better control of
systems’ safety. To this end, reliability is composed of a static approach (see
Ngom et al. [1999] for example) as well as a dynamic approach (see Reory &
Andrews [2003] for example). In this paper, we extend the framework stated
by Gatfaoui (2003) allowing for the application of fault tree theory to credit
risk assessment. The author explains that fault tree is one alternative approach
of reliability, which matches default risk analysis in a simple framework. Our
extension includes other distributions of probability to model the lifetimes of
French firms while studying the related empirical default probabilities. We use
mainly, but not exclusively, continuous distributions for which the exponential
law used by Gatfaoui (2003) constitutes a particular case. Our results exhibit
both the exponential nature of French firms’ lifetimes as well as strong convex
and fast decreasing time varying failure rates. Such a feature has some non-
negligible impact insofar as it characterizes corresponding credit spreads’ term
structure.

Keywords : credit risk, default probability, failure rate, fault tree, reliability,
survival.
JEL codes : C1, D8.
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1 Introduction
Whatever the considered matter, risk has become of major interest since the

80’ (see Cabarbaye [1998], Henley & Kumamoto [1992] and Papoulis [1984] for
example). The risk that a disastrous event occurs is of great importance since
such an event engenders social harm as well as economic and financial losses.
This principle also applies to credit risk valuation, which has been focused since
the last decade. Indeed, the Basel II directives underline the importance of
the ability to value and quantify fairly default risk (see Basel Committee on
banking supervision [1996] for example). Therefore, the sound and reliable
assessment of default risk represents the challenge of the next decade. Along
with this consideration, we employ the simple setting of Gatfaoui (2003) to
value credit risk. The author applies fault tree theory to assess default risk
in a simple framework (see Bon [1995] and Rothenthal [1998] among others).
More precisely, starting from the empirical default probabilities characterizing
the bankruptcy of French firms, fault tree analysis allows for estimating the
hazard rates, or equivalently, the failure rates of these French firms. The process
is easy and straightforward. The lifetimes of French firms are the focus of
the study since any firm’s default probability corresponds to the probability
of death of the firm, or equivalently, to the probability that its lifetime ends.
Therefore, failure rates’ estimations depend on the probability distribution of
the related lifetimes. Gatfaoui (2003) chose to resort to an exponential law with
a constant intensity in order to describe French firms’ default probabilities.
However, although this statistical representation seems to be appropriate, the
author finds that the corresponding implied failure rates are time varying, and
exhibit a convex decreasing pattern. Such a result is in accordance with the work
of Fons & Kimball (1991) who highlight the significant time varying behavior
of failure rates. This time varying feature is shown to be as important as
firms’ credit ratings are low. Moreover, choosing an exponential law with a
constant parameter implicitly assumes a time independence for the hazard rate
function (i.e., the present does not depend on the past). Such an assumption
is nevertheless inconsistent with modern default risk analysis. Indeed, it is well
known that bankruptcy threatens especially young firms under five years old,
supporting the existence of a life cycle for firms. Such a consideration suggests a
time dependence for the hazard function. Namely, hazard rates or, equivalently,
default probabilities should have higher levels at the beginning of newly created
firms’ existence.
Although a time varying intensity exponential law can be proxied by a series

of constant intensity exponential laws over well chosen and su ciently small
time subsets, we focus on the global behavior of hazard rates. We propose con-
sequently to extend the work of Gatfaoui (2003) in order to take into account
the time dependence of the failure rate function. For this purpose, we consider
the following set of probability distributions, namely lognormal, log-logistic,
gamma, weibull, beta of second species, a mixture of two exponential laws with
constant intensity, and finally, two non-homogeneous Poisson processes known
as Cox-Lewis and exponential exponent. In this way, we are able to account
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for a wide range of whether monotonous, hump-shaped, convex or concave fail-
ure rates relative to time. And, we can capture most of empirical well known
patterns describing corporate failures. We hope our framework to allow for pa-
rameter estimates leading to distributions for which the two first moments are
defined and finite. Indeed, the existence of the first two moments is extremely
important in characterizing reliability (i.e., survival time of firms). Specifically,
our distributions’ set requires the existence and boundedness of their respec-
tive mean and variance (i.e., volatility). These two moments belong to the key
parameters and conditions that define each of our eight possible probability
distributions in a theoretical viewpoint (e.g., mean time to failure).
Our paper is organized as follows. First, we recall the theoretical frame-

work for reliability (i.e., basic notions and principles) and the characteristics
of each probability distribution (i.e., statistical properties). Second, we present
the related results (e.g., parameter estimates for each distribution-type) and
the Kolmogorov adequacy test ensuring the soundness of our representations.
We also perform an exponentiality test to investigate the coherency of our non-
homogeneous Poisson processes versus the classical exponential law with con-
stant intensity while describing French failures. Such a test allows us to investi-
gate the usefulness and relevance of a time varying intensity parameter versus a
constant one in exponential-type representations. Third, we look for the optimal
representation of our failure rates given our set of consistent probability distri-
butions, and compute the related forward conditional default probabilities over
various time horizons. The optimality criterion we employ solves a quadratic
problem, namely the minimization of some absolute error function. Hence, the
optimal characterization fits at best the empirical default probabilities under
consideration. Fourth, we use the obtained optimal representations to deduce
the corresponding term structure of credit risky discount bonds. By the way, we
underline the link prevailing between the reduced form approach of credit risk
and reliability. Precisely, the reduced form approach is known to often stipulate
a priori dynamics for risky bonds’ term structure and therefore credit spreads’
term structure. This branch of credit risk assessment is based on the study of
the default time’s arrival, and its representation as a random variable since the
instant of potential default is unknown and uncertain. Such a setting is therefore
founded on the intensity process of default, which describes the probability that
a default event occurs over any infinitesimal time interval. Hence, characterizing
credit spreads’ term structure requires only information about both the hazard
rate function and the corresponding potential recovery rate (when the risk free
term structure is deterministic at most). Finally, we end our paper with some
concluding remarks and possible extensions to our analysis in the lens of time
dependence and business cycle’s impact. Specifically, economic world’s changes
impact default risk (i.e, possibility of corporate failures at any time) as time
elapses. Recall that any risk profile is defined by two main dimensions, namely
time and uncertainty.
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2 Theoretical framework
In this section, we introduce briefly the setting employed by Gatfaoui (2003)

to match fault tree analysis with credit risk assessment. Then, we present our
set of chosen probability distributions aimed at describing any default event.

2.1 Fault tree theory

Fault tree theory requires to model the lifetime of the system under con-
sideration, namely any firm here. The basic assumptions concern an elementary
fault tree1 and state that the firm’s debt outstandings (e.g., some solvency prin-
ciples) engender the default event, which occurs suddenly without any possibility
to recover from the failure state. Moreover, any firm is assumed to be always in
a non-default state before default occurs. In such a case, the default probability
at current time corresponds to the probability that the firm’s lifetime ends

between 0 and . Therefore, the default probability depends strongly on the
cumulative distribution function2 , and consequently, the distribution func-
tion3 of the lifetime of any firm since = ( ) = ( ) =

R
0
( ) for

each time 0. In a symmetric way, the survival function corresponds to
the probability that the firm’s lifetime still goes on after a given date, namely
( ) = 1 ( ) = ( ) =

R +
( ) for each time 0. And, the

lifetime’s first moment for example then writes:

[ ] =

Z +

0

( ) (1)

Such a setting allows us to define the hazard rate function , or equivalently,
the failure rate as follows for each time 0:

( ) = lim
0+

( + | )
(2)

which implies for each time 0 that:

( ) = exp

Z
0

( )

¸
(3)

and

( ) =
( )

( )
=

( )

1 ( )
(4)

The hazard rate is closely linked to the probability that the lifetime of a firm
ends on a specified time subset given that the firm has not defaulted before the

1We assume that one default event triggers the firm’s bankruptcy (i.e., a simple one branch
tree).

2 It is assumed that (0) = 0 and (+ ) = 1. We further assume that is continuous
and once derivable relative to time.

3Given our framework, is only defined for positive values since a lifetime can only be
positive.
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lower bound of this time interval. Moreover, considering relation (3), we find
that:

= 1 ( ) = 1 exp

Z
0

( )

¸
(5)

Such a representation assumes explicitly a link between the default probability
and its related hazard rate. We can also translate this consideration into the
fact that the hazard rate impacts the default probability. And, such a feature
is in accordance with the work of Bakshi et al. (2004). Therefore, starting from
default probabilities, or equivalently, failure rates, we are able to characterize
any firm’s bankruptcy given our framework and assumptions. To this end, we
just have to select the type of the probability distribution characterizing the
firm’s lifetime. Our related choice is introduced in the next subsection.

2.2 Statistical distributions

We present here our set of distributions aimed at describing the lifetime of
any firm. Our distribution set is composed of eight probability-type functions,4

which we introduce therein for each time 0. Our choice is driven by stylized
facts that usually describe corporate default risk such as asymmetric patterns
(i.e., high or low risk of loss for investors as a function of firms’ creditworthiness
through time).

The lognormal distribution with parameters R and (with 0) ex-
hibits the following features for ( ) being the cumulative distribution function
of the standard normal law:

( ) =
1

2

1
2 (

ln( ) )
2

(6)

( ) =

μ
ln ( )

¶
(7)

Given relation (4), we know that the hazard rate function is a concave function
of time such that (0) = 0 and lim ( ) = 0. Indeed, the failure rate reads as

follows for ( ) being the distribution function of the standard normal law:

( ) =
1

³
ln( )

´
1

³
ln( )

´ (8)

The log-logistic distribution with parameters R and (with 0) is
featured as follows:

( ) =
1

μ
ln ( )

¶
(9)

( ) =

μ
ln ( )

¶
(10)

4The reader is invited to consult the book of Tassi (1992) for more details.
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with
( ) = ( ) (1 ( )) (11)

( ) =
1

1 +
(12)

Relation (4) allows then to express the hazard rate function such that:

( ) =

1 1

1 +
1 (13)

where
= (14)

Such a representation is very flexible since the failure rate can take di erent
shapes. For example, it is hump-shaped, slightly convex and strongly convex
respectively when we successively have5 1, = 1 and 1.

The gamma distribution with parameters and , namely ( ), is de-
scribed by its scale parameter 0 and its shape parameter 0 such that:

( ) =
( )

( ) 1 (15)

where

( ) =

Z +

0

1 = ( 1) ( 1) (16)

for any real positive . When = 1, the gamma distribution simply corresponds
to an exponential law with a constant intensity equal to . When 6= 1, there
is no analytical expression6 for the hazard function, which is expressed as:

( ) =
1Z +

0

¡
+ 1
¢ 1

(17)

In this case, for 1, we know that the failure rate is a concave increasing
function of time such that lim

0
(0) = 0 and lim ( ) = . For 1, the

failure rate becomes a convex decreasing function of time with lim
0
(0) =

and lim ( ) = . This representation7 allows then for monotonous failure

rate’s behavior relative to time. Assessing the impact of the hazard rate on both
recovery rates and default probabilities while studying default risk assessment,
Bakshi et al. (2004) use a gamma distribution to characterize the hazard rate.

5Here, is a shape parameter.
6There is also no analytical expression for the cumulative distribution function , or equiv-

alently, the default probability and the survival function .
7Recall that when = 1, this distribution is called ‘standard gamma distribution’.
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The weibull distribution with 0, 0 and 0 parameters is charac-
terized by its scale parameter , its shape parameter and its location parameter
. We have the following description:

( ) =

μ ¶ 1
( ) (18)

( ) = 1 ( ) (19)

such that the failure rate then writes:

( ) =

μ ¶ 1

(20)

Notice that when lifetime follows a weibull distribution with parameters

( ), then
³ ´

follows an exponential law with an intensity parameter

equal to 1.

The second species beta distribution ( ) with parameters 0 and
0 exhibits the following distribution function:

( ) =
1

( )

1

(1 + ) +
(21)

where

( ) = ( ) =

Z 1

0

1 (1 ) 1 =
( ) ( )

( + )
(22)

such that we get

( ) =
1

( )

Z
0

1

(1 + )
+ (23)

Here, and are two shape parameters, which have to be compared to 1. Indeed,
their location relative to the unit value determines the degree of curvature of
the failure rate.8

Using a mixture of two exponential laws with constant intensity assumes
that the studied firms are composed of two sub-populations, namely two groups
of firms whose lifetimes follow two distinct exponential laws with constant in-
tensities. Let 1 0 and 2 0 be respectively the two intensities of our
exponential processes, and 1 and 2 the corresponding probabilities that each
sub-population follows one given exponential distribution. In this case, we have
1 + 2 = 1 such that the distribution and cumulative distribution functions of
our firms’ lifetimes then write:

( ) = 1 1
1 + 2 2

2 = 1 1
1 + (1 1) 2

2 (24)

8 It also determines the degree of curvature of the related distribution function .
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( ) = 1 1
1

2
2 = 1 1

1 (1 1) 2 (25)

Therefore, the failure rate takes the following form:

( ) =
1 1 + 2 2

( 2 1)

1 + 2
( 2 1)

=
1 1 + (1 1) 2

( 2 1)

1 + (1 1) ( 2 1)
(26)

When 2 1, the failure rate becomes a homographic function of ( 2 1)

and also a convex decreasing function of time with values9 (0) = 1 1+ 2 2

1+ 2
=

1 ( 1 2) + 2 and lim ( ) = 1. This representation is consistent with

the behavior of French firms’ implied failure rates exhibited by Gatfaoui (2003).
Besides, such a time-varying behavior of the failure rate leads us to focus on
two particular non-homogeneous Poisson processes, namely Poisson laws with
time-varying intensity parameters. The first one is the Cox-Lewis process also
called log-linear model with parameters R and R, and its features are
as follows:

( ) =

(
exp ( )× if = 0

exp
n ¡

1
¢o× + if 6= 0 (27)

( ) =

(
1 exp ( ) if = 0

1 exp
n ¡

1
¢o

if 6= 0 (28)

such that we get
( ) = + (29)

Notice that the case = 0 represents the classical exponential law with para-
meter . Moreover, when 0, the system, or equivalently, any firm is said
to deteriorate whereas the firm is said to improve, or equivalently, to become
economically and financially healthier when 0.10

The second non-homogeneous Poisson process corresponds to the exponen-
tial exponent law with parameters 0 and 0, which is described by:

( ) = exp
¡ ¢× 1 (30)

( ) = 1 exp
¡ ¢

(31)

( ) = 1 (32)

When = 1, we get the classical exponential distribution with parameter .
Moreover, when 1, the failure rate is a convex decreasing function of time
whereas it becomes an increasing (convex or concave) function of time when

1. This representation is also called ‘weibull law with two parameters’ and
allows for monotonous failure rates relative to time.

9Notice that under our assumption, we have 0 1 (0) 2.
10The hazard rate function is a convex function of time whatever the sign of parameter.

Specifically, is increasing when 0 and decreasing when 0. Of course, it becomes a
constant function of time when is zero.
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Hence, our set of possible statistical representations allows to capture a wide
range of (deterministic) time varying intensity processes. Considered failure
rates can be whether monotonous, hump-shaped, convex or concave. Neverthe-
less, the adequacy of our selected representations depends on the observed and
empirical patterns describing the corporate failures under consideration.

3 Estimation and adequacy
Having a set of potential distributions aimed at characterizing our firms’

lifetimes, we are going to estimate the related parameters. For this purpose, we
present briefly the data we use. Then, we introduce our estimation method, and
end with an adequacy test in order to check for the consistency of the chosen
distributions.

3.1 Parameter estimation

Using empirical default probabilities, we estimate each distribution’s pa-
rameters while minimizing the cumulative squared error relative to the cor-
responding set of parameters. When such parameters are both finite and in
adequacy with our theoretical framework, we perform a Kolmogorov-Smirnov
test to investigate the coherency of our theoretical probability distributions.

3.1.1 Data

We study French firm’s bankruptcy using monthly empirical default prob-
abilities ˆ of Gatfaoui (2003) ranging from january 1990 to december 1999,
namely time ranges from 1 month to 120 months. Such probabilities are com-
puted as the ratio of the number of defaulting firms during month to the
number of listed existing firms during this month.11 We consider the empirical
aggregate default probabilities12 of 16 economic sectors, which correspond to
motor trade and repairing industry (AU), consumer goods (BC), capital goods
(BE), intermediate goods and energy (BI), construction and civil engineering
(BP), specialized food retail trade (DA), non-specialized retail trade (DN), other
specialized retail trade (DS), food wholesale trade (GA), non-food wholesale
trade (GN), hotels, catering and cafés industry (HR), food processing sector
(IA), real estate (IM), business services (SE), private services (SP), and finally
transport industry (TT). ‘TOTAL’ refers to the empirical default probability all
sectors included, or equivalently, the global default probability. These default
probabilities are shown to be asymmetric and generally exhibit a negative excess
of kurtosis.
11We do not compute hazard rates since the sample of existing firms during our time horizon

incorporates newly created firms.
12We compute default probabilities that are aggregated at each economic sector’s level

(i.e., all ratings included). This way, we obtain a general trend for corporate defaults while
observing failures among each sector.
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Recall that our framework assumes that we observe ˆ = ˆ ( ) for each time
{1 120}. Our work is now to try to fit our theoretical distributions to

the empirical behavior of French firms’ lifetimes.

3.1.2 Estimation method and results

Our aim is to attempt to characterize soundly French firms’ lifetimes. For
this purpose, we are going to try to fit a set of theoretical probability distri-
butions to our French empirical default probabilities. Let be the set of our
eight potential probability distributions. Each statistical law depends on a set
of parameters . For example, = { } and = R × R+ for the log-
normal distribution belonging to . Let ( ) and ( ) be the corresponding
theoretical cumulative distribution function and failure rate respectively.
To estimate the set of parameters ˆ fitting our empirical default probabilities,

we solve a quadratic minimization problem. We realize the minimization of the
sum of squared observed errors as follows:

ˆ = argmin

(
120X
=1

³
ˆ ( ) ( )

´2)
(33)

The resolution of this quadratic problem is achieved while using the Polak-
Ribiere Conjugate Gradient methodology.13 We present therein the conclusions
of our estimation method. To spare space, we do not display the related results
when they are inconsistent since these ones are not interesting for the rest of
the paper.

Concerning the lognormal distribution, our minimization algorithm does not
converge for finite values of ˆ and ˆ. Therefore, this distribution is incompat-
ible with our theoretical framework. In the log-logistic case, the minimization
converges towards finite values of parameters for only five sectors, namely SP,
HR, SE, IM and GN. Concerning the other economic sectors, the algorithm does
not converge towards finite values of ˆ and ˆ. And, our corresponding results
are displayed in the table underneath.

Table 1: Log-logistic parameters

Sector GN HR IM SE SP
ˆ 68.2402 125.5136 29.3724 106.0047 77.2463
ˆ 19.4402 34.9037 8.0572 24.9806 17.2062

Since the estimated shape parameter ˆ lies above unity, the log-logistic dis-
tribution implies a strong convex decreasing behavior for the failure rate in
accordance with Gatfaoui (2003).

13Refer to Polak (1971) and Press et al. (1992) among others for more details about this
optimization method.
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The gamma law’s estimation is such that the algorithm converges towards a
positive scale parameter but a negative shape parameter for each sector, which
is inconsistent with our theoretical framework assuming a positive shape para-
meter. Indeed, a negative shape parameter implies both a negative theoretical
expectation14 for the lifetime and a negative theoretical variance, which is in-
coherent. Thus, the two first moments are not defined in such a setting. In the
same way, the weibull’s estimation leads to a negative shape parameter for all
sectors and also a negative location parameter for some of them. Such results
are contrary to the assumptions underlying this distribution. Therefore, the
weibull distribution is inconsistent with the general behavior of French firm’s
lifetimes. Analogously, the second species beta distribution is not suitable for
modeling the lifetimes of French firms. Indeed, the results exhibit a positive
value of ˆ but a negative value of ˆ (i.e., contrary to theoretical assumption) for
all the sectors under consideration.

The estimations corresponding to the mixture of exponential laws are not
far from the previous conclusion. Only SP sector can be represented by such
a distribution. The other sectors exhibit generally a negative ˆ1 parameter
and a positive ˆ2 parameter or the reverse in some cases. Those results are
incompatible with the theoretical framework. We then find:

Table 2: Parameters for mixture of exponential laws

Sector ˆ1 ˆ2 ˆ
1

ˆ
2

SP 0.9870 0.0130 1.3976e-005 5.7764

The empirical probability that SP sector’s lifetime follows an exponential law of
the first type (i.e., an exponential law with intensity ˆ1) is extremely high. We
also performed the corresponding estimations for a mixture of exponential laws
with equiprobability (i.e., 1 = 2 =

1
2). Estimation results show that whether

ˆ
1 or ˆ2 is negative which is inconvenient. Therefore, a mixture of exponential
laws does not seem adapted to describe French bankruptcies.

On the contrary, the Cox-Lewis distribution’s estimation leads to coherent
results for all economic sectors, indicating that such a statistical law is appro-
priate to describe French bankruptcies. The related estimations are given in the
table underneath.

Table 3: Cox-Lewis parameters
14Recall that a lifetime is positive.
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Sector AU BC BE BI BP DA
ˆ -2.4440 -2.0748 -3.0046 -2.0627 -1.9593 -2.2075
ˆ -3.1448 -3.0248 -1.3567 -4.0070 -3.8640 -4.9615

Sector DN DS GA GN HR IA
ˆ -1.9346 -2.4457 -2.0959 -4.2696 -3.0655 -2.4848
ˆ -5.2897 -3.8166 -3.8987 -0.3850 -1.5432 -3.9962

Sector IM SE SP Total TT
ˆ -5.4703 -2.5166 -2.8646 -2.4751 -2.2966
ˆ -0.0938 -4.8638 -4.0902 -3.1545 -3.7812

Since all the shape parameters ˆ are negative, we can conclude that from january
1990 to december 1999, French firms live healthy times in general since their
credit quality improves. Namely, French failure rates are convex decreasing
functions of time. This feature is mostly due to the good side of the business
cycle in France during this time period. Moreover, ˆ is clearly di erent from
zero in most cases except for GN and IM sectors.15 Broadly speaking, such
a behavior is contrary to the classical exponential law assumption of Gatfaoui
(2003).

In a less powerful way, the exponential exponent law’s representation matches
only 5 economic sectors such as GN, HR, IM, SE and SP. Concerning the rest
of the studied economic sectors, our minimization algorithm converges towards
negative values of the shape parameter ˆ, which is inconsistent with our theo-
retical setting. We display the corresponding results in the table below.

Table 4: Exponential exponent parameters

Sector GN HR IM SE SP
ˆ 0.0295 0.0271 0.0258 0.0140 0.0112
ˆ 0.0505 0.0283 0.1213 0.0446 0.0580

Since ˆ lies below unity, French firms’ failure rates are convex decreasing func-
tions of time. Moreover, the estimated shape parameter lies far from unity,
which is again contrary to the classical exponential law assumption. We are
going to check for this feature in the next subsection.

3.2 Adequacy test

We process in two steps here. First, considering our non-homogeneous
Poisson processes, we investigate whether the estimated parameters exhibit a
classical exponential law behavior for our failure rates. To this end, we achieve
an exponentiality test. Second, we check for the adequacy of our convenient

15We are going to investigate later such a result for those sectors.
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statistical representations with French empirical default probabilities. We resort
to Kolmogorov-Smirnov test for this purpose.

The exponentiality test is aimed at testing whether our non-homogeneous
Poisson processes correspond to a classical exponential law with constant in-
tensity or not. This is equivalent to test whether = 0 for the Cox-Lewis
process or = 1 for the exponential exponent process. Concerning the Cox-
Lewis process case, we assume that 6= 0. Given the complex nature of the
Cox-Lewis process, an exponentiality test cannot be achieved easily and requires
a more advanced analysis,16 which is not the goal here. One straightforward
test would be to compare the results we get when 6= 0 (i.e., a pure Cox-
Lewis process) with the ones we obtain when = 0 (i.e., classical exponential
law as stated in Gatfaoui [2003]). Therefore, our exponentiality test will be
summarized in the next section while looking for an optimal representation of
our empirical default probabilities, in terms of best fitting. Incidentally, let us
underline that the inadequacy of the time independence assumption underlying
the classical exponential model as applied to credit risk valuation supports a
Cox-Lewis modeling with 6= 0.

The theoretical framework stated by relation (31) for the exponential expo-
nent case implies that:

( ) = ln ( ) (34)

with

( ) = ln
ln (1 )

¸
ln ( ) (35)

= 1 (36)

The exponentiality test related to the second non-homogeneous Poisson process
is then equivalent to test whether = 0 or not. We realize therefore the regres-

sion of ˆ ( ) = ln
h

ln(1 ˆ )
ˆ

i
ln ( ) on ln ( ), for our five sectors, to achieve

such a test. Our first results show a positive first order autocorrelation of the
related regressions’ residuals while considering the corresponding Durbin Wat-
son’s statistic17 (which is always below unity). For reasons of parsimony, we
do not report these non-interesting results here. To bypass the autocorrela-
tion problem, we process to the minimization of the following sum of squared

16 Indeed, this kind of test is complex in our case insofar as we do not observe but only
( ) for each in {1 120}.
17We also performed a Phillips-Perron unit root test, which showed that ˆ ( ) was a first

order-integrated series for each of the five studied sectors.

13



errors:18

min

(
120X
=1

³
ˆ ( ) ln ( )

´2)
(37)

which gives the following results:19

Table 5: Exponential exponent’s regression parameters

Sector GN HR IM SE SP
ˆ -0.9443 -0.9745 -0.8855 -0.9576 -0.9516

Skewness 1.1724 1.2526 1.1352 0.6264 1.4573
Kurtosis 4.5636 5.0911 4.5513 4.0145 5.9134

Jarque-Bera 39.7157 53.2454 37.8079 12.9947 84.9146
Significant at a 1% level of Student t-test.

We see that ˆ is significantly di erent from zero (i.e., ˆ is significantly di erent
from unity), which confirms the non-classical exponential law assumption. We
also give some descriptive statistics related to ˆ , and which show the non-
normality of ˆ .

Let us now introduce the obtained results for the Kolmogorov-Smirnov ad-
equacy test. This test is aimed at assessing the appropriateness of theoretical
distributions to the empirical observed behaviors (i.e., empirical distributions).
We display the corresponding empirical adequacy statistic in the tables under-
neath for each convenient probability representation.

Table 6: Log-logistic Kolmogorov statistic

Sector GN HR IM SE SP
Statistic 0.1250 0.1418 0.2617 0.0751 0.0537

Table 7: Kolmogorov statistic for mixed exponential laws
18This is equivalent to maximize the corresponding log-likelihood function while assuming

normal regression residuals, or to employ the generalized method of moments (i.e., GMM)
with three moment conditions here (i.e., the zero expectation assumption for residuals, the
constant variance of residuals, and the zero cross-correlations assumptions between residuals).
Moreover, testing for overidentifying conditions with Hansen’s (1982) J -statistic in GMM
estimation, we accept the 0 orthogonality assumption (i.e., no unsatisfied overidentifying
restriction or, equivalenlty, no violation of extra moment restrictions) at a 1% level for our
five sectors GN, HR, IM, SE and SP. Refer to Hamilton (1994), Mittelhammer et al. (2000)
or Ruud (2000), among others, for further explanations about Hansen’s (1982) test and overi-
dentifying restrictions.
19Notice that we have the following bounded absolute di erence 0 0021 ˆ ˆ 1

0 0068, which underlines the soundness of our previous estimation and also supports the non-
classical exponential distribution assumption.
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Sector Statistic
SP 0.0554

Table 8: Cox-Lewis Kolmogorov statistic

Sector AU BC BE BI BP DA
Statistic 0.1004 0.1873 0.2873 0.2336 0.1598 0.1020
Sector DN DS GA GN HR IA
Statistic 0.1625 0.0966 0.2001 0.1305 0.1341 0.1005
Sector IM SE SP Total TT
Statistic 0.2354 0.0740 0.0555 0.1006 0.1236

Table 9: Exponential exponent’s Kolmogorov statistic

Sector GN HR IM SE SP
Statistic 0.1250 0.1418 0.2618 0.0753 0.0537

Given a five percent level of test, the corresponding critical value of the
Kolmogorov-Smirnov statistic is approximatively 1.3412 for a number of obser-
vations equal to 120. Our results show that we accept the null hypothesis of
adequacy for our convenient probability distributions. Namely, consistent es-
timated parameters of distributions match conveniently the empirical observed
behavior of French failures. The following of our work consists therefore of
choosing the optimal probability representation compared to the classical expo-
nential law of Gatfaoui (2003), and to induce the related implications.

4 Optimal selection and default probabilities
Given the convenient possible statistical representations of French failures,

we currently face the task of selecting the optimal distribution. Once it is
determined, the optimal representation allows to compute the corresponding
forward conditional default probabilities.

4.1 Optimal distribution’s choice

We are facing a selection problem concerning the choice of the most ap-
propriate distribution that describes French bankruptcies. For this purpose, we
choose the average absolute error as a selection criterion. Therefore, the most
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realistic representation fitting our empirical French default probabilities corre-
sponds to the theoretical probability distribution, which minimizes the average
absolute error20 as follows:

ˆ = min

(
1

120

120X
=1

¯̄̄
ˆ ( ) ˆ ( )

¯̄̄)
(38)

where ˆ is the empirical cumulative distribution function and ˆ is the theo-
retical cumulative distribution function employed with ˆ parameter estimates.
We display in the tables underneath the results21 we get relative to the average
absolute error for each convenient representation in set.

Table 10: Log-logistic average absolute error

Sector GN HR IM SE SP
Statistic 0.00389083 0.00345087 0.008771 0.001942 0.00149397

Table 11: Average absolute error for mixed exponential laws

Sector Statistic
SP 0.001554

Table 12: Cox-Lewis average absolute error

Sector AU BC BE BI BP DA
Statistic 0.002815 0.005809 0.007836 0.007033 0.003810 0.002588

Sector DN DS GA GN HR IA
Statistic 0.005075 0.002813 0.003953 0.00387747 0.00356350 0.002709

Sector IM SE SP Total TT
Statistic 0.007328 0.002017 0.001639 0.002802 0.003366

Table 13: Exponential exponent’s average absolute error

Sector GN HR IM SE SP
Statistic 0.00389129 0.00345071 0.008775 0.001939 0.00149367

20Specifically, the most appropriate representation minimizes the 1-norm distance. We
could also have used the 2-norm distance, which corresponds to the square root of the sum
of squared error. These two methodologies are equivalent and give the same results in terms
of optimal selection.
21We had to add generally two more decimals to allow an easier comparison between possible

representations, and four more decimals for GN, HR and SP sectors’ representations to better
discriminate between results.
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We also display therein the average absolute error obtained in Gatfaoui (2003)
while using the classical exponential representation.

Table 14: Classical exponential’s average absolute error

Sector AU BC BE BI BP DA
Statistic 0.012148 0.021474 0.020258 0.017890 0.017198 0.009677

Sector DN DS GA GN HR IA
Statistic 0.015079 0.011391 0.015517 0.01532811 0.0135336 0.010531

Sector IM SE SP Total TT
Statistic 0.019761 0.007418 0.005748 0.012562 0.012865

Given our selection criterion (38), we find that AU, BC, BE, BI, BP, DA, DN,
DS, GA, GN, IA, IM, Total and TT sectors are optimally described by a Cox-
Lewis process whereas HR, SE and SP sectors are optimally represented by
an exponential exponent distribution. Notice that such an optimal selection
criterion also constitutes an exponentiality test highlighting the non-classical
exponential feature of French default probabilities. Indeed, non-homogeneous
Poisson processes seem more appropriate to describe French bankruptcies, and
currently underline a convex decreasing behavior of corresponding hazard rates
relative to time in the lens of their respective parameter estimates. Such a
feature is also supported by TOTAL’s behavior, which gives the general trend
of French failures here in accordance with the convex decreasing implied hazard
rates exhibited by Gatfaoui (2003).

4.2 Forward conditional default probabilities

Having knowledge about the optimal characterization of French failures,
we are able to achieve some forecasts concerning French bankruptcies. More
precisely, we are able to compute the monthly probability that a given firm
defaults in the forthcoming months provided that it has not defaulted before
time {1 120}, or equivalently, january 1990-december 1999 (i.e., the range
of our observed sample period). The corresponding conditional forward default
probability then writes on the basis of optimal representations ˆ :

22

( + | ) =
( + )

( )
=

ˆ ( + ) ˆ ( )

1 ˆ ( )
(39)

For all the sectors under consideration, we compute the related conditional for-
ward default probabilities on the forthcoming one year, two years and five years
horizons for = 120 (i.e., forecasts of forward conditional default probabilities).

22The forward conditional survival probability can also be obtained by computing the sym-

metric quantity ( + | ) = 1 ( + | ) =
1 ˆ ( + )

1
ˆ
( )

.
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While realizing our estimations, we assume implicitly that the business cycle’s
trend will remain stable over the forthcoming months following january 1999
(i.e., some favorable scenario). Our related results are displayed in the table
underneath:

Table 15: Forward conditional default probabilities (in percent)

Sector 1 year 2 years 5 years
AU 0 0 0
BC 0 0 0
BE 0 0 0
BI 0 0 0
BP 0.000039 0.000052 0.000058
DA 0 0 0
DN 0 0 0
DS 0 0 0
GA 0 0 0
GN 0 0 0
HR 0.008368 0.016026 0.035750
IA 0 0 0
IM 0 0 0
SE 0.007382 0.014148 0.031619
SP 0.008160 0.015648 0.035023
TT 0 0 0
Total 0 0 0

Whatever the chosen forthcoming horizon following the end of our sample pe-
riod, the forward conditional default probabilities we generally get are so small
that they can be set to zero in value. This feature is not surprising given the
strong convex and fast decreasing behavior of the corresponding failure rates.
Indeed, French failure rates are strongly decreasing since the corresponding es-
timated parameters are negative and the time horizon is long (i.e., high time
value in months). Hence, forward conditional default probabilities are generally
stable whatever the coming time window under consideration. By the way, the
level of failure rates is quasi-zero for most of economic sectors except for BP,
HR, SE and SP sectors. The later sectors exhibit a conditional forward default
probability as high as the forthcoming horizon is long. Such features rely on
possible and plausible economic explanations. During our studied decade, BP
sector experiences both a real estate crisis and a restructuring of the construc-
tion branch. Di erently, the number of annual failures for SE sector increases
slightly (i.e., a two percent average increase over ten years). As regards HR and
SP sectors, the high probability levels may result from the non-negligible number
of business start-ups given that the mortality rate of young firms is extremely
high during their first five years of existence. Moreover, compared to the results
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obtained by Gatfaoui (2003), the classical exponential model tends to greatly
overestimate forward conditional default probabilities. Moreover, this low gen-
eral forward default risk behavior is due to the global business cycle’s growth
characterizing our sample period. In addition, we also display in the appendix
the forward conditional default probabilities we get for the same time horizons,
but starting from the beginning of our sample period, namely current time = 1,
or equivalently, on january 1990. As expected, in-sample forward conditional
default probabilities (i.e., estimated at time = 1) are higher than out-sample
forward conditional default probabilities (i.e., estimated at time = 120). In-
deed, estimating forward conditional default probabilities at the far end of our
time horizon assumes that the trend of the business cycle’s growth will remain
stable over the coming time horizon under consideration.

5 Credit spreads
We first present our theoretical framework that allows for assessing the

value of any credit risky discount bond. Then, we apply our setting to compute
the related credit spreads.

5.1 Discount bonds

We introduce here the link between reliability and the reduced form ap-
proach of credit risk while valuing discount bonds and related credit spreads.
First, we set our basic assumptions and valuation framework. Then, we deduce
the credit spread’s term structure implied by credit risky discount bonds.

Reliability attempts to determine the time when a given firm may end its life,
or equivalently, its survival time. Any firm’s lifetime is assumed to stop when
the firm under consideration defaults. Therefore, any firm’s default probability
is also linked to the arrival time of its potential default. Let be the default
time, or equivalently, the (first) date when a default event occurs. Given our
framework, could be defined as the first time (between the issuing of the firm’s
debt = 0 and its corresponding maturity ) when the firm’s value crosses down
a fixed critical threshold known as its default barrier.23 In such a framework,
is a random variable also called default stopping time, and satisfies the following
relations in the light of reliability:24

( ) = ( ) = ( ) (40)

( ) = ( ) = ( ) (41)

Hence, ( ) represents the probability of transition at time from a non-
default state to a default state whereas ( ) represents the probability

23 In practice, the default point lies between the firm’s current short term debt and its
current total debt (i.e., the sum of its current long term and short term debt).
24The law describing the firm’s lifetime is the same as the probability distribution describing

the default time variable.
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of transition from a non-default state to a non-default state (i.e., stability of
the firm’s working state). Recall that default consists of an absorbing state,
which implies that any firm remains definitively in a failure state once it has de-
faulted.25 Consequently, our framework implies the following conditional prob-
abilities:

( | ) = 0 (42)

( | ) = 1 (43)

In the lens of reduced form approach, we are able to price credit risky bonds
under some regularity assumptions. First, consider a credit risky discount bond
( ) at current time with maturity , and assume that this discount bond

allows for a fixed payment only at maturity.26 The payment received by the
discount bond’s holder is conditional on the occurrence of a default event before
maturity . Indeed, the payment corresponds to a unit of currency if no default
event has occurred before whereas it corresponds to a constant partial amount
of currency if a default event occurs before maturity . Namely, the bond’s

corresponding payment at expiration is:

( ) =

½
1 if

if
(44)

Notice that [0 1] corresponds to the recovery rate27 received by the debthold-
ers of the issuing firm under consideration in case of a default occurring before
maturity.28 Moreover, the final payment provided by the risky discount bond at
maturity can be written as ( ) = 1{ }+ 1{ } where 1{ } is equal
to 1 if { } is satisfied and 0 else. Second, consider a risk free discount bond
( ) at current time with maturity , related to a deterministic risk free

interest rate ( ) at most. Consequently, the risk free discount factor satisfies
the following relation whatever 0 :

( ) = exp

( Z
( )

)
(45)

25 It is impossible for any defaulted firm to recover solvency (i.e., equation [42]), and there-
fore, to start working again in a reliability sense after a default event (i.e., equation [43]).
Namely, equation [42] represents the probability of transition at time from a default state to
a non-default state while equation [43] represents the probability of transition from a default
state to a default state (i.e., stability of the firm’s non-working state).
26 Such a setting is aimed at representing firms issuing homogeneous debts.
27 In practice, the recovery rate is di erent from unity. We could rewrite the final discount

bond’s price in a more general form such that ( ) = where = 1 when , and
[0 1[ when .

28The recovery rate is paid to debtholders at maturity when the default barrier is reached
before the discount bond’s expiration date.
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Given our assumptions and framework, we are able to price the risky discount
bond in the universe endowed with probability29 as the discount value of its
final payment:

( ) = E [ ( ) ( ) | ] (46)

where E [ ] is the unconditional expectation operator relative to the probability
measure , such that we finally get:

( ) = ( )
1 ( )

1 ( )
+

( ) ( )

1 ( )

¸
(47)

Given relation (3), the former expression becomes:

( ) = ( )
£
(1 ) +

¤
(48)

with

= exp
© ª

= exp

( Z
( )

)
= ( ) ( ) (49)

where =

Z
( ) is the cumulative hazard rate between and . No-

tice that given definitions (29) and (32), we have then for the Cox-Lewis and
exponential exponent processes respectively:30

=
¡ ¢

(50)

=
¡ ¢

(51)

Thus, we are able to value credit risky discount bonds while knowing only
their respective hazard rate functions and the risk free term structure (see, for
example, Jeanblanc & Rutkowski [2002] for more details and explanations).

To go further, we introduce the respective yields to maturity ( ) and
( ) corresponding to the risk free term structure and the credit risky dis-

count bonds as follows for each [0 ]:

( ) = exp { ( ) ( )} ( ) (52)

29We assume that is the pricing measure inferred from market data. All the regularity
conditions ensuring that is a measure equivalent to the historical (i.e., original) one
such that risky assets’ discount prices are -martingales, are assumed to hold here. Under
both the incomplete market and the arbitrage-free principle assumptions, let Q be the set of
martingale measures equivalent to . We therefore know that any risky bond’s price lies in

the following arbitrage-free prices’ bracket ( ) inf
Q

( ) sup
Q

( ) (see

Giesecke & Goldberg [2003] for example). Notice that we could also assume that both is
the historical probability and investors are risk-neutral.
30Here, the Cox-Lewis shape parameter is assumed to be non-zero.
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( ) = exp { ( ) ( )} ( ) (53)

Hence, the related credit spread takes the following form:

( ) = ( ) ( ) =
1

ln

½
( )

( )

¾
(54)

which leads to the new expression:

( ) =
1

ln
©
(1 ) exp

© ª
+
ª

(55)

Thus, our framework allows us to describe and compute credit spreads while
knowing only the hazard rate functions of the credit risky discount bonds un-
der consideration (see Fons [1994] among others). Recall that such default
rate functions are obtained from the empirical behavior of monthly aggregate
default probabilities. Therefore, we compute analogously monthly aggregate
credit spreads among sectors (i.e., all ratings included for a given sector).

5.2 Estimations

All the assumptions stated in the previous subsection are assumed to hold
here. Since we have already determined the optimal representations of French
failures along with reliability and therefore the corresponding hazard rate func-
tions, we are going to apply the previous framework to value the related theo-
retical credit spreads’ levels.

Recall that HR, SE and SP sectors’ lifetimes follow an exponential exponent
distribution process, which implies that the theoretical credit spread related to
our credit risky discount bond’s setting expresses:

( ) =
1

ln
©
(1 ) exp

© ¡ ¢ª
+
ª

(56)

Given that the fourteen other sectors’ lifetimes follow a Cox-Lewis process, the
corresponding theoretical credit spreads then write:

( ) =
1

ln

½
(1 ) exp

½ ¡ ¢¾
+

¾
(57)

Such a characterization allows us to compute the related term structures of
credit spreads at any given time . Due to the strong convex and fast decreasing
behavior of French failure rates over our time sample, we choose to estimate the
theoretical term structure of related credit spreads at current time = 1 (i.e.,
on january 1990), for time horizons (i.e., time to maturity ) corresponding
to 1, 2 , 5 and 10 year(s) successively. Moreover, the recovery rate is allowed
to take two distinct values, namely zero (i.e., total loss for debtholders) or 50%
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(i.e., medium loss scenario).31 We display our results in the tables below for
each value taken by the recovery rate . We study two distinct cases, namely a
zero recovery rate situation and a 50% recovery rate setting.

Table 16: Theoretical credit spreads for = 0 (in basis points)

Sector 1 year 2 years 5 years 10 years
AU 0.1944 0.0972 0.0389 0.0194
BC 0.3195 0.1598 0.0639 0.0320
BE 5.3811 2.6906 1.0762 0.5381
BI 0.1068 0.0534 0.0214 0.0107
BP 23.0054 15.2351 6.7867 3.4056
DA 0.5054 0.2527 0.1011 0.0505
DN 0.4163 0.2082 0.0833 0.0416
DS 0.1293 0.0647 0.0259 0.0129
GA 0.1148 0.0574 0.0230 0.0115
GN 20.3992 10.3001 4.1205 2.0602
HR 1.6976 1.0752 0.5564 0.3278
IA 0.6379 0.3189 0.1276 0.0638
IM 0.4808 0.2404 0.0962 0.0481
SE 1.4136 0.9003 0.4694 0.2782
SP 1.4907 0.9538 0.5005 0.2980
TT 0.9908 0.4954 0.1982 0.0991
Total 0.9484 0.4742 0.1897 0.0948

Drawing the same conclusions whether the recovery rate is zero or 50%, we
give our general comments about credit spreads’ levels after the next table.

Table 17: Theoretical credit spreads for = 0 5 (in basis points)

31When the recovery rate is zero, we then have ( 0) = 1 ( ) . The theoret-

ical credit spread corresponds to the average cumulative hazard rate on the remaining time
to maturity of debt.
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Sector 1 year 2 years 5 years 10 years
AU 0.0972 0.0486 0.0194 0.0097
BC 0.1598 0.0799 0.0320 0.0160
BE 2.6862 1.3431 0.5372 0.2686
BI 0.0534 0.0267 0.0107 0.0053
BP 11.4233 7.5479 3.3588 1.6854
DA 0.2527 0.1263 0.0505 0.0253
DN 0.2081 0.1041 0.0416 0.0208
DS 0.0647 0.0323 0.0129 0.0065
GA 0.0574 0.0287 0.0115 0.0057
GN 10.1372 5.1182 2.0475 1.0237
HR 0.8484 0.5373 0.2780 0.1637
IA 0.3189 0.1594 0.0638 0.0319
IM 0.2404 0.1202 0.0481 0.0240
SE 0.7065 0.4499 0.2345 0.1390
SP 0.7450 0.4766 0.2500 0.1489
TT 0.4953 0.2476 0.0991 0.0495
Total 0.4741 0.2370 0.0948 0.0474

Whatever the value of the potential recovery rate, the three highest credit
spreads by descending order concern BP, GN and BE sectors respectively. The
smallest computed credit spreads relate to BI sector. Moreover, the credit
spreads estimated for TOTAL sector give general and average trends for French
credit spreads under our basic framework and assumptions. Incidentally, BE,
BP, GN, HR, SE and SP sectors exhibit higher credit spreads than those esti-
mated for TOTAL sector, the eleven remaining French sectors exhibiting smaller
credit spreads’ levels. On average, credit spreads decrease by 50.0599% when
switching from a zero recovery to a 50% recovery scenario32 (all time horizons
included). Incidentally, the obtained theoretical sector aggregate credit spreads
are similar to the credit spreads’ levels computed for AAA and AA rating classes
according to the standard of Moody’s rating agency (at the beginning of the 90’
economic growth, or equivalently, the favorable prevailing business cycle).
As a rough guide, we also plot the theoretical term structure of our credit

spreads for TOTAL sector as a function of both time to maturity and recovery
rate. Thus, we get a general trend for the theoretical credit spreads’ term
structure related to our French bankruptcies on january 1990 (i.e., at current
time = 1 as represented in Fig. 1 below).

As expected, TOTAL sector’s credit spreads are as high as the recovery’s
level is low. Moreover, the shorter the debt’s time to maturity, the higher those
credit spreads are. Of course, these credit spreads are zero when the recovery is
100% since there is no risk of loss for debtholders. In such a case, any discount

32The percentage of reduction remains slightly the same whatever the time horizon under
consideration.
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Figure 1: Theoretical credit spread’s term structure for TOTAL sector in janu-
ary 1990.

bond’s investor becomes certain to receive the risky discount bond’s final unit
payment. Such levels and features for credit spreads are highly explained by the
global good side of the business cycle in France during the 1990-1999 decade.
Indeed, Fisher (1959) shows the impact of business cycle on credit spreads.
Specifically, these global risk premia fluctuate through time with a specific be-
havior. Credit spreads tend to increase during crisis time period whereas they
tend to decrease during economic growth.

6 Conclusion
In this paper, we have tried to apply some quantitative tools for a credit

risk management purpose. Since credit risk encompasses the possibility of so-
cial, economic and financial harms, some control setting and some credit risk
management policies have to be determined in order to minimize the harmful ef-
fects of disastrous risky events such as failures. Such a process requires to define
and quantify the combinations of events that are likely to trigger a bankruptcy,
namely our top-event. Fault tree theory, which is an alternative approach of
reliability, consists of such a process as far as any disastrous event is defined by
both its frequency and its consequences. Such a characterization is aimed at
helping to prevent the occurrence of the top-event, or equivalently, bankruptcy.
Along with this point of view, we have extended the framework of Gatfaoui

(2003) to assess default risk while employing the fault tree approach. This au-
thor describes French firms’ lifetimes and failure rates while using a classical
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exponential law with constant intensity. We have proposed a set of eight proba-
bilistic representations for failure rates, which encompass sometimes the classical
exponential law as a special case. We have found that French bankruptcies are
better described by a non-homogeneous Poisson process, and therefore a time
varying failure rate, such as Cox-Lewis or exponential exponent-type distribu-
tion. The obtained French failure rates are convex decreasing functions of time.
Indeed, fourteen sectors are optimally represented by a Cox-Lewis process with
a negative shape parameter whereas the three remaining sectors are optimally
described by an exponential exponent process with a shape parameter lying far
below unity.
Once our French failures are optimally characterized, we compute the cor-

responding one, two and five year(s) forward conditional default probabilities.
The results we get show that conditional default probabilities are zero for most
economic sectors expected for BP, HR, SE and SP sectors. These findings
come from the strong decreasing behavior of related hazard rates. Specifically,
French sectors’ hazard rates generally tend to be zero at the end of our sam-
ple period, implying their zero value for even longer time horizons. We have
also noticed the misestimations induced by the classical exponential law. In
particular, using a classical exponential law to model French failure rates gen-
erates a strong overestimation bias while assessing forward conditional default
probabilities. Consequently, a sound method of valuation of French failures re-
quires the use Cox-type processes. However, our estimations are achieved on a
time interval encompassing a favorable business cycle (and assuming thus the
same economic trend in the future). The occurrence of any business cycle’s
reversal just after our sample period would lead to biased forward estimations
of default since contrary to the future trend. Therefore, we have to take into
account and to realize expectations about forthcoming business cycles in order
to assess soundly default risk. Indeed, any credit risk valuation method should
encompass the future business cycle’s trend in a forecasting prospect. Moreover,
firms’ lifetimes and then related failure rates are known to depend strongly on
time varying explanatory variables (see Altman [1993] for example). Thus, one
way to solve this bias problem would be to employ a Cox-type process with a
time varying intensity parameter depending on both accounting, financial and
above all macroeconomic variables in order to account for the business cycle’s
e ect. This suggests two straightforward possible extensions in order to achieve
realistic failure forecasts encompassing business cycle’s reversal in a dynamic
framework.33

First, we could apply a more complex approach of fault tree requiring sto-
chastic processes to assess probabilities of transition from one state to another.
Such a process would employ Cox-type processes with stochastic intensities.
Specifically, the intensity, or equivalently, the failure rate could depend on sto-
chastic variables such as firm value and/or its solvency ratio (to encompass
financial and accounting information), as well as interest rates among others

33We give an example of dynamic fault tree’s application in the appendix, provided that
the appropriate assumptions and default framework are stated.

26



(to account for business cycle’s e ect). Although explored by the reduced form
approach of credit risk (see Gill & Johansen34 [1990], Lando35 [1998] or Jarrow
& Yu36 [2001] for example, and also Jeanblanc & Rutkowski [2002]), such a key
point is left for future research along with fault tree and reliability analysis (i.e.,
general setting for credit risk valuation).
Second, we could extend our sample period in order to incorporate at least

two di erent business cycles (i.e., an economic growth followed by an economic
recession or the reverse situation). In this way, we would obtain more realistic
estimates since calculated on the two possible states of the world, or equivalently,
on two distinct economic scenarii. And, some of the rejected statistical represen-
tations (i.e., lognormal, gamma, weibull and beta of second species laws) would
certainly become valid in a non-stable economic setting. Indeed, the occurrence
of extreme unfavorable events during downturns would increase the bad side
of default risk (i.e., fatter left tails due to increased shocks to firms’ financial
health). Over a longer sample time period (i.e., several business cycles), we
could also test the probabilistic representation named fatigue life of Birnbaum
& Saunders (1969a,b) to assess French firms’ reliability provided that we state
the appropriate assumptions and framework. Indeed, this representation as-
sumes repeated cycles of stress scenarii leading to firms’ bankruptcy. In such
a case, default is no more an absorbing state since any firm can recover from
failure and go back to bankruptcy in a ‘cyclical’ (i.e., iterated) manner. This
setting is plausible and realistic as long as default does not imply a liquidation
of the firm’s assets. Moreover, this framework assumes independency between
the current stress cycle and past stress cycles. Such a probabilistic representa-
tion allows to characterize whether highly skewed and long tailed lifetimes or
nearly symmetric and short tailed lifetimes. Future research should start some
reflection about such insights in a more e cient, fine and dynamic risk man-
agement prospect. Indeed, default risk assessment’s goal is to get in phase with
economic, financial and accounting situations.
Finally, we applied our optimal characterizations of French bankruptcies to

compute credit spreads in the lens of the reduced form approach of credit risk.
Theoretical credit spreads are decreasing functions of both time to maturity
and recovery rates (when the later are assumed constant). Incidentally, we
underline and establish the clear link prevailing between ‘classic’ credit risk
analysis and the alternative approach of fault tree theory. The next step for
future research is to encompass the reduced form side of credit risk analysis in the
more general framework of reliability. Hence, credit risk assessment will focus on
any chain of events leading to any firm’s bankruptcy in a dynamic setting. Such
an assessment could be achieved while using some of the well-known technical
and stochastic methods peculiar to reliability, namely Petri networks or Markov

34Those authors employ Cox-type stochastic processes in a Markov modeling framework
(i.e., inhomogeneous Markov chain).
35This author applies a doubly stochastic Poisson process to assess credit risky assets (e.g.,

bonds and credit derivatives) with a fractional recovery rate.
36Those authors extend reduced form models to account for default intensities that depend

on firm-specific risks, which are considered as counterparty risks.
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graphs’ theory. Employing reliability to assess credit risk will consequently
allow us to finally match both financial, accounting and macroeconomic data.
Helping therefore to reconcile structural approach with reduced form approach
of credit risk valuation in a more general, flexible, sound and reliable dynamic
risk management framework.

7 Appendix
We give some complementary information or details relative to our default

risk analysis in this section. First, we give some in sample conditional default
probabilities’ estimates. Second, we show graphically the possible employment
of our framework to assess credit risk.

7.1 Conditional default probabilities

We compute the forward conditional default probabilities on the forthcom-
ing one, two and five year(s) horizons when starting from the beginning of our
sample period. Namely, we are computing in-sample forward conditional default
probabilities (i.e., only estimation but no forecast of such probabilities).

Table 18: Forward conditional default probabilities (in percent)

Sector 1 year 2 years 5 years
AU 0.1188 0.1188 0.1188
BC 0.0577 0.0577 0.0577
BE 0.0765 0.0765 0.0765
BI 2.4182 2.4417 2.4420
BP 0.0138 0.0138 0.0138
DA 2.7229 3.5904 3.9902
DN 0.0606 0.0606 0.0606
DS 0.0128 0.0128 0.0128
GA 0.0155 0.0155 0.0155
GN 0.0499 0.0499 0.0499
HR 0.1695 0.2158 0.2813
IA 0.0233 0.0233 0.0233
IM 0.0383 0.0383 0.0383
SE 0.1787 0.2286 0.2998
SP 0.2035 0.2577 0.3333
TT 0.1137 0.1137 0.1137
Total 0.6437 0.6437 0.6437

Notice that these forward conditional default probabilities seem to be constant
whatever the forthcoming time horizon.37 This behavior is due to the fact that
37We get the same results while employing a ten digits rule for our default probabilities’

decimals.

28



related failure rates decrease quickly towards zero as functions of time. Ac-
cordingly, forward conditional default probabilities of BI, DA, HR, SE and SP
sectors are increasing functions of coming time horizon while forward conditional
default probabilities of remaining sectors are stable over time. Indeed, forward
conditional default probabilities of Total sector suggest a stable general trend
over 1, 2 and 5 years horizons starting from January 1990. Moreover, among
our sixteen economic sectors, only BI and DA sectors exhibit forward condi-
tional default probabilities that lie far above the level of Total sector’s forward
conditional default probability. Some of the French economic features during
our studied decade allow to justify such high probability levels. Indeed, on an
annual basis, the number of failures for the industry sector remains first globally
stable (i.e., general stable level over ten years). Second, the global trade sector
exhibits a number of failures that is higher than other economic sectors during
this decade. Specifically, the food branch exhibits a non-negligible number of
resounding failures that is probably due to the related reoganization process
undergone. Finally, DS sector exhibits the lowest forward conditional default
probabilities whereas DA sector exhibits the highest ones.

7.2 An example of application

We show here graphically some dynamic application of our credit risk as-
sessment framework provided to add the appropriate improvements and assump-
tions (e.g., Petri networks). Let us introduce some definitions before introducing
our diagram. We establish the following notations for ease of exposition:

Table 19: Some definitions

Notation Meaning
FC Financial crisis state
NFC Non-Financial crisis state
AFF Accounting and financial factors
NAFF Non-Accounting and Non-financial factors

Accounting and financial factors are assumed to summarize any relevant infor-
mation about structural features of firms among others. The general unified
framework that could allow to encompass all the approaches of credit risk val-
uation existing to date is introduced in Fig. 2 below.

The tree’s part corresponding to the economic state represents the first level
of our risk analysis while considering business cycle’s e ects. The second level
of our risk analysis, as described by FC and NFC, accounts for systematic
risk (i.e., high and low levels of the undiversifiable risk that is common to any
financial asset). Finally, the third level of our risk study characterizes a specific
risk level along with AFF and NAFF variables (i.e., structural, industry and
sector specific features as well as operational risk side for example). Notice
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Figure 2: Potential application of dynamic fault tree theory

that a fourth level can be added to account for normative, institutional and
legal factors or patterns that describe failure or default state in the accounting,
financial or else viewpoints (e.g., failure law, accounting and financial standard).
Moreover, the extreme left branch of the second risk level of the tree allows us
to characterize two kinds of extreme scenarii (i.e., worst situations for firms).
We then have a finest description of the combination of events possibly leading
to default. The minimal path leading to bankruptcy allows to incorporate a
large number of explanatory variables accounting for both business cycle’s e ect,
systematic risk and specific risk (see Allen & Saunders [2003, 2004] for a brief and
clear review about credit risk valuation in the lens of these three dimensions).
Both typology and tradeo between events entering the composition of such a
tree describe the credit quality’s (i.e., creditworthiness) potential probability of
transition from one state to another at a given time and for any specified firm.
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