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Abstract

Explained variance (R2) is a familiar summary of the fit of a linear regression and has been generalized
in various ways to multilevel (hierarchical) models. The multilevel models we consider in this paper
are characterized by hierarchical data structures in which individuals are grouped into units (which
themselves might be further grouped into larger units), and there are variables measured on individuals
and each grouping unit. The models are based on regression relationships at different levels, with the
first level corresponding to the individual data, and subsequent levels corresponding to between-group
regressions of individual predictor effects on grouping unit variables. We present an approach to defining
R2 at each level of the multilevel model, rather than attempting to create a single summary measure of
fit. Our method is based on comparing variances in a single fitted model rather than comparing to a null
model. In simple regression, our measure generalizes the classical adjusted R2.

We also discuss a related variance comparison to summarize the degree to which estimates at each
level of the model are pooled together based on the level-specific regression relationship, rather than
estimated separately. This pooling factor is related to the concept of shrinkage in simple hierarchical
models. We illustrate the methods on a dataset of radon in houses within counties using a series of
models ranging from a simple linear regression model to a multilevel varying-intercept, varying-slope
model.

Keywords: adjusted R-squared, Bayesian inference, hierarchical model, multilevel regression, partial
pooling, shrinkage

1 Introduction

1.1 Explained variation in linear models

Consider a linear regression written as yi = (Xβ)i + εi, i = 1, . . . , n. The fit of the regression can be

summarized by the proportion of variance explained:

R2 = 1 −
V
n

i=1
εi

V
n

i=1
yi

, (1)

where V represents the finite-sample variance operator, V
n

i=1
xi = 1

n−1

∑n
i=1(xi − x̄)2. In a multilevel model

(that is, a hierarchical model with group-level error terms or with regression coefficients β that vary by

group), the predictors “explain” the data at different levels, and R2 can be generalized in a variety of ways
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(for textbook summaries, see Kreft and De Leeuw, 1998, Snijders and Bosker, 1999, Raudenbush and Bryk,

2002, and Hox, 2002). Xu (2003) reviews some of these approaches, their connections to information theory,

and similar measures for generalized linear models and proportional hazards models. Hodges (1998) discusses

connections between hierarchical linear models and classical regression.

The definitions of “explained variance” that we have seen are based on comparisons with a null model, so

that R2 = 1− residual variance under the larger model
residual variance under the null model , with various choices of the null model corresponding

to predictions at different levels.

In this paper we shall propose a slightly different approach, computing (1) at each level of the model and

thus coming up with several R2 values for any particular multilevel model. This approach has the virtue of

summarizing the fit at each level and requiring no additional null models to be fit. In defining this summary,

our goal is not to dismiss other definitions of R2 but rather to add another tool to the understanding of

multilevel models.

1.2 Pooling in hierarchical models

Multilevel models are often understood in terms of “partial pooling,” compromising between unpooled and

completely pooled estimates. For example, the basic hierarchical model involves data yj ∼ N(αj , σ
2
y), with

population distribution αj ∼ N(μα, σ2
α) and hyperparameters μα, σy , σα known. For each group j, the

multilevel estimate of the parameter αj is

α̂multilevel
j = ωμα + (1 − ω)yj , (2)

where

ω = 1 − σ2
α

σ2
α + σ2

y

(3)

is a “pooling factor” that represents the degree to which the estimates are pooled together (that is, based

on μα) rather than estimated separately (based on the raw data yj). The extreme possibilities, ω = 0 and 1,

correspond to no pooling (α̂j = yj) and complete pooling (α̂j = μα), respectively. The (posterior) variance

of the parameter αj is

var(αj) = (1 − ω)σ2
y . (4)

The statistical literature sometimes labels 1−ω as the “shrinkage” factor, a notation we find confusing

since a shrinkage factor of zero corresponds to complete shrinkage towards the population mean. To avoid

ambiguity, we use the “pooling factor” terminology in this paper. The form of expression (3) matches the

form of the definition (1) of R2, a parallelism we shall continue throughout.

The concept of pooling is used to help understand multilevel models in two distinct ways: comparing the

estimates of different parameters in a group, and summarizing the pooling of the model as a whole. When

comparing, it is usual to consider several parameters αj with a common population (prior) distribution but

different data variances; thus, yj ∼ N(αj , σ
2
y j). Then ωj can be defined as in (3), with σy j in place of σy.

Parameters with more precise data are pooled less towards the population mean, and this can be displayed
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graphically by a parallel coordinate plot showing the raw estimates yj pooled toward the posterior means

α̂multilevel
j , or a scatterplot of α̂multilevel

j vs. yj . Pooling of the model as a whole makes use of the fact that the

multilevel estimates of the individual parameters αj , if treated as point estimates, understate the between-

group variance (Louis, 1984). See Efron and Morris (1975) and Morris (1983) for discussions of pooling and

shrinkage in hierarchical or “empirical Bayes” inference.

In this paper we present a summary measure, λ, for the average amount of pooling at each level of a

multilevel model. We shall introduce an example to motivate the need for such summaries, and then discuss

the method and illustrate its application.

1.3 Example: a varying-intercept, varying-slope model for home radon levels

In general, each stage of a multilevel model can have regression predictors and variance components. In this

paper, we propose summary measures of explained variation and pooling that can be defined and computed

at each level of the model. We demonstrate with an example adapted from our own research—a varying-

intercept, varying-slope model for levels of radon gas in houses clustered within counties. The model has

predictors for both houses and counties, and we introduce it here in order to show the challenges in defining

R2 and λ in a multilevel context.

Radon is a carcinogen—a naturally occurring radioactive gas whose decay products are also radioactive—

known to cause lung cancer in high concentration, and estimated to cause several thousand lung cancer deaths

per year in the United States. The distribution of radon levels in U.S. houses varies greatly, with some

houses having dangerously high concentrations. In order to identify the areas with high radon exposures,

the Environmental Protection Agency coordinated radon measurements in each of the 50 states.

We illustrate here with an analysis of measured radon in 919 houses in the 85 counties of Minnesota.

In performing the analysis, we use a house predictor—whether the measurement was taken in a basement

(radon comes from underground and can enter more easily when a house is built into the ground). We

also have an important county predictor—a county-level measurement of soil uranium content. We fit the

following model,

yij ∼ N(αj + βj · basementij , σ2
y), for i = 1, . . . , nj , j = 1, . . . , J

αj ∼ N(γ0 + γ1uj, σ2
α), for j = 1, . . . , J

βj ∼ N(δ0 + δ1uj, σ2
β), for j = 1, . . . , J, (5)

where yij is the logarithm of the radon measurement in house i in county j, basementij is the indicator

for whether the measurement was in a basement, and uj is the logarithm of the uranium measurement in

county j. The errors in the first line of (5) represent “within-county variation,” which in this case includes

measurement error, natural variation in radon levels within a house over time, and variation among houses

(beyond what is explained by the basement indicator). The errors in the second and third lines represent

variations in radon levels and basement effects between counties, beyond what is explained by the county-
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Figure 1: Jittered data and estimated regression lines from the multilevel model, y = αj + βj · basement,
for radon data, displayed for 8 of the 85 counties j in Minnesota. Both the intercept and the slope vary by
county. Because of the pooling of the multilevel model, the fitted lines do not go through the center of the
data, a pattern especially noticeable for counties with few observations.

level uranium predictor. The between-county errors, αj and βj , are modeled as independent—see Section 5

for discussion of this point.

The hierarchical model allows us to fit a regression to the individual measurements while accounting for

systematic unexplained variation among the J = 85 counties. Figure 1 shows the data and fitted regression

lines within counties, and Figure 2 shows the estimated county parameters and the county-level regression

lines.

This example illustrates some of the challenges of measuring explained variance and pooling. The model

has three levels, with a different variance component at each level. Here, “levels” correspond to the separate

variance components rather than to the more usual measurement scales (of which there are two in this case,

house and county). Uncertainty in the α and β parameters affects the computation of explained variance for

the data-level model—the simple measure of R2 from least-squares regression will not be appropriate—and

also for the county-level models, since these are second-stage regressions with outcomes that are estimated,

not directly observed.

In summarizing the pooling of a batch of parameters in a multilevel model, expression (3) cannot in

general be used directly—the difficulty is that it requires knowledge of the unpooled estimates, yj, in (2). In

the varying-intercept, varying-slope radon model, the unpooled estimates are not necessarily available, for

example in a county where all the measured houses have the same basement status.

These difficulties inspire us to define measures of explained variance and pooling that do not depend on

fitting alternative models but rather summarize variances within a single fitted multilevel model.
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Figure 2: (a) Estimates ± standard errors for the county intercepts αj , plotted vs. county-level uranium
measurement uj , along with the estimated multilevel regression line, α = γ0+γ1u. (b) Estimates ± standard
errors for the county slopes βj , plotted vs. county-level uranium measurement uj , along with the estimated
multilevel regression line, β = δ0 + δ1u. For each graph, the county coefficients roughly follow the line but
not exactly; the discrepancies of the coefficients from the line are summarized by the hierarchical standard
deviation parameters σα, σβ .

2 Summaries based on variance comparisons within a single fitted
model

We define our generalizations of R2 and pooling factors for each level of a multilevel model and then in

Section 2.5 describe how to compute these summaries using Bayesian posterior simulation draws.

2.1 Notation

We begin by defining a standard notation for a multilevel model with M levels. (For example, M = 3 in the

radon model of Section 1.3.) At each level m, we write the model as,

θ
(m)
k = μ

(m)
k + ε

(m)
k , for k = 1, . . . , K(m), (6)

where the μ
(m)
k ’s are the linear predictors at that level of the model and the errors ε

(m)
k come from a

distribution with mean zero and standard deviation σ(m). At the lowest (data) level of the model, the θ
(m)
k ’s

correspond to the individual data points (the yij ’s in the radon model). At higher levels of the model, the

θ
(m)
k ’s represent batches of effects or regression coefficients (county intercepts αj and slopes βj in the radon

model). Because we work with each level of the model separately, we shall suppress the superscripts (m) for

the rest of the paper.

The striking similarity of expressions (1) and (3), which define R2 and λ, respectively, suggests that the

two concepts can be understood in a common framework. We consider each to represent the fraction of

variance explained, first by the linear predictor μ and then by the hierarchical model for ε.

5



2.2 Proportion of variance explained at each level

For each level (6) of the model, we first consider the variance explained by the linear predictors μk. Gener-

alizing from the classical expression (1), we define

R2 = 1 −
E

(
V
K

k=1
εk

)

E
(

V
K

k=1
θk

) . (7)

In a Bayesian simulation context, the expectations in the numerator and denominator of (7) can be evaluated

by averaging over posterior simulation draws, as we discuss in Section 2.5.

R2 will be close to 0 when the average residual error variance is approximately equal to the average

variance of the θk’s. R2 will be close to 1 when the residual errors εk are each close to zero for each posterior

sample. Thus R2 is larger when the μk’s more closely approximate the θk’s.

In classical least-squares regression, (7) reduces to the usual definition of R2: the numerator of the ratio

becomes the residual variance, and the denominator is simply the variance of the data. Averaging over

uncertainty in the regression coefficients leads to a lower value for R2, as with the classical “adjusted R2”

measure (Wherry, 1931). We discuss this connection further in Section 3.1.1. It is possible for our measure

(7) to be negative, much like adjusted R2, if a model predicts so poorly that, on average, the residual error

variance is larger than the variance of the data.

2.3 Pooling factor at each level

The next step is to summarize the extent to which the variance of the residuals εk is reduced by the pooling

of the hierarchical model. We define the pooling factor as

λ = 1 −
V
K

k=1
E(εk)

E
(

V
K

k=1
εk

) . (8)

The denominator in this expression is the numerator in expression (7)—the average variance in the εk’s, that

is, the unexplained component of the variance of the θk’s. The numerator in the ratio term of (8) is the

variance among the point estimates (the shrinkage estimators) of the εk’s. If this variance is high (close to

the average variance in the εk’s), then λ will be close to 0 and there is little pooling. If this variance is low,

then the estimated εk’s are pooled closely together, and the pooling factor λ will be close to 1.

In Section 3.2.4, we discuss connections between the pooling factor (8) and the pooling factor ω defined

in (3) for the basic hierarchical model.

2.4 Properties of the measures of explained variance and pooling

Since R2 and λ are based on finite-population variances, they are well-defined for each level of a multilevel

model, and automatically work even in the presence of predictors at that level. An alternative approach
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based on hyperparameters could run into difficulties in such situations since the hyperparameters may not

correspond exactly to the variance comparisons we are interested in.

As a model improves (by adding better predictors and thus improving the μk’s), we would generally

expect both R2 and λ to increase for all levels of the model. Increasing R2 corresponds to more of the

variation being explained at that level of the regression model, and a high value of λ implies that the model

is pooling the εk’s strongly towards the population mean for that level.

Adding a predictor at one level does not necessarily increase R2 and λ at other levels of the model,

however. In fact, it is possible for an individual-level predictor to improve prediction at the data level but

decrease R2 at the group level (see Kreft and De Leeuw, 1998, Gelman and Price, 1998, and Hox, 2002, for

discussion and examples of this phenomenon). For the purpose of this paper, we merely note that a model

can have different explanatory power at different levels.

2.5 Computation using posterior simulations

Multilevel models are increasingly evaluated in a Bayesian framework and computed using posterior simula-

tion, in which inferences for the vector of parameters are summarized by a matrix of simulations (see, e.g.,

Gilks et al., 1996, Carlin and Louis, 2001, and Gelman et al., 2003).

We can then evaluate R2 and λ at each level m of the model using the posterior simulations (not simply

the parameter estimates or posterior means), as follows:

1. Evaluate R2 from (7):

(a) From each simulation draw of the model parameters:

i. Compute the vector of θk’s, predicted values μk and the vector of residuals, εk = θk − μk.

ii. Compute the sample variances, V
K

k=1
θk and V

K

k=1
εk.

(b) Average over the simulation draws to estimate E
(

V
K

k=1
θk

)
and E

(
V
K

k=1
εk

)
, and then use these to

calculate R2.

2. Evaluate λ from (8) using these same simulation draws in a different way:

(a) For each k, estimate the posterior mean E(εk) of each of the errors εk as defined in step 1(a)i

above.

(b) Compute V
K

k=1
E(εk)—that is, the variance of the K values of E(εk)—and then use this, along with

E( V
K

k=1
εk) from step 1(b) to calculate λ.

We compute R2 and λ for each level; see Figure 3 for an illustration based on the radon data in Section

1.3. Appendix B shows the computations as implemented in Bugs (Spiegelhalter et al., 1994, 2003) and R

(R Development Core Team, 2003).

7



3 Connections to classical definitions

Our general expression for explained variance reduces to classical R2 for simple linear regression with the

least-squares estimate for the vector of coefficients. Similarly, for the basic hierarchical model of Section 1.2,

our group-level pooling factor is related to the standard definition, conditional on a particular point estimate

of the variance components. We present these correspondences here, together with the less-frequently-

encountered pooling factor for the regression model and explained variance for the basic hierarchical model.

We illustrate with an applied example in Section 4 and provide further details of the calculations in Ap-

pendix A.

3.1 Classical regression

The classical normal linear regression model can be written as yi = (Xβ)i + εi, i = 1, . . . , n, with linear

predictors (Xβ)i and errors εi that are normal with zero mean and constant variance σ2.

3.1.1 Explained variance and adjusted R2

If we plug in the least-squares estimate, β̂ = (XT X)−1XT y, then the proportion of variance explained (7)

simply reduces to the classical definition,

R2 = 1 −
E

(
V
n

i=1
εi

)

E
(

V
n

i=1
yi

) = 1 − yT (I − H) y

yT Ic y
,

where I is the n× n identity matrix, H = X(XT X)−1XT , and Ic is the n×n matrix with 1−1/n along the

diagonal and 1/n off the diagonal.

In a Bayesian context, to fully evaluate our expression (7) for R2, one would also average over posterior

uncertainty in β and σ. Under the standard noninformative prior density that is uniform on (β, log σ), the

proportion of variance explained (7) becomes,

R2 = 1 −
(

n − 3
n − p − 2

)
yT (I − H) y

yT Ic y
,

where p is the number of columns of X .

This is remarkably similar to the classical adjusted R2. In fact, if we plug in the classical estimate,

σ̂2 = yT (I−H) y/(n−p), rather than averaging over the marginal posterior distribution for σ2, then (7)

becomes

R2 = 1 −
(

n − 1
n − p

)
yT (I − H) y

yT Ic y
,

which is exactly classical adjusted R2. Since n−3
n−p−2 > n−1

n−p for p > 1, our “Bayesian adjusted R2” leads to

a lower measure of explained variance than the classical adjusted R2. This makes sense, since the classical

adjusted R2 could be considered too high since it does not account for uncertainty in σ.
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3.1.2 Pooling factor λ

The pooling factor defined in (8) also has a simple form. Evaluating the expectations over the posterior

distribution yields,

λ = 1 − n − p − 2
n − 3

.

If we plug in the classical estimate, σ̂2 = yT (I−H) y/(n−p), rather than averaging over the marginal posterior

distribution for σ2, then (8) becomes

λ = 1 − n − p

n − 1
.

We can see that in the usual setting where the number of regression predictors, p, is small compared to the

sample size, n, this pooling factor λ for the regression errors will be close to zero. This makes sense because,

in this case, the classical residuals (y−Xβ̂)i are nearly independent, and they closely approximate the errors

εi = (y − Xβ)i. Thus, very little shrinkage is needed to estimate these unobserved εi’s.

3.2 One-way hierarchical model

The one-way hierarchical model has the form, yij ∼ N(αj , σ
2
y), i = 1, . . . , nj , j = 1, . . . , J , with population

distribution αj ∼ N(μα, σ2
α), and we can determine the appropriate variance comparisons at each of the

two levels of the model. For simplicity, we assume that the within-group sample sizes nj are all equal to

a common value n, so that the total sample size is N = nJ . The basic hierarchical model of Section 1.2

corresponds to the special case of n = 1.

We use the usual noninformative prior density that is uniform on (μα, log σy, σα). It is not possible to

derive closed-form expressions for (7) and (8) averaging over the full posterior distribution. Instead, we

present plug-in expressions using the method-of-moments estimators,

σ̂2
α + σ̂2

y/n =
yT Īc y

N
,

σ̂2
y =

yT (Ic − Īc) y

N
, (9)

where y = (y11, . . . , yn1, . . . , y1J , . . . , ynJ)T is the N -vector of responses, Īc is the N × N block-diagonal

matrix with n×n matrices containing elements 1/n−1/N along the diagonal and n× n matrices containing

elements −1/N off the diagonal, and Ic is the N × N matrix with 1−1/N along the diagonal and −1/N

off the diagonal. Thus, the first estimator in (9) is the sample variance of the J group means (rescaled by

(J−1)/J), while the second estimator is the pooled within-group variance (rescaled by (n−1)/n); we provide

further details in Appendix A.

3.2.1 Explained variance R2 for the data-level model

Conditional on σy and σα, the proportion of variance explained, (7), at the data level is

R2 = 1 − yT (Ic − Īc) y + ω2 yT Īc y + J(1 − ω)σ2
y

yT Ic y
.
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Plugging in the estimators (9) leads to

R2 = 1 −
(

n + 1
n

)
yT (Ic − Īc) y

yT Ic y

= 1 − σ̂2
y/n

σ̂2
α/(n + 1) + σ̂2

y/n
.

Subject to finite-sample size adjustments, this is approximately equal to the usual value for R2 in this model,

1 − σ2
y/(σ2

α + σ2
y).

3.2.2 Pooling factor λ for the data-level model

Conditional on σy and σα, the pooling factor, (8), at the data level is

λ = 1 − yT (Ic − Īc) y + ω2 yT Īc y

yT (Ic − Īc) y + ω2 yT Īc y + J(1 − ω)σ2
y

.

Plugging in the estimators (9) leads to

λ = 1 − n2 yT Īc y + yT (Ic − Īc) y

n(n + 1) yT Īc y

= 1 −
n

n+1 σ̂2
α + σ̂2

y/n

σ̂2
α + σ̂2

y/n
.

If the within-group sample sizes n are reasonably large, this data-level pooling factor λ is close to zero,

which makes sense because the data-level residuals are good approximations to the data-level errors (similar

to the case of classical regression as discussed in Section 3.1.2).

3.2.3 Explained variance R2 for the group-level model

At the group level, the one-way hierarchical model has no predictors, and so R2 = 0.

3.2.4 Pooling factor λ for the group-level model

Conditional on σy and σα, the pooling factor, (8), at the group level is

λ = 1 − (1 − ω) yT Īc y

(1 − ω) yT Īc y + J σ2
y

.

Plugging in the estimators in (9) leads to

λ = 1 − n yT Īc y − yT (Ic − Īc) y

n yT Īc y

= 1 − σ̂2
α

σ̂2
α + σ̂2

y/n
.

This expression reduces to (3) by setting n equal to 1 for the basic hierarchical model of Section 1.2.
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4 Applied example

We apply the methods of Section 2.5 to the example from Section 1.3 of home radon levels. We fit four

models:

1. A simple linear regression of log radon level on basement indicators, illustrating the theoretical calcu-

lations of Section 3.1.

2. A simple one-way hierarchical model of houses within counties, extending the theoretical calculations

of Section 3.2 to account for unequal sample sizes and uncertainty in the variance parameters.

3. A varying-intercept hierarchical model, with basement as an individual-level predictor and log uranium

as a county-level predictor.

4. The full varying-intercept, varying-slope model (5), in which the basement effect β is allowed to vary

by county.

Figure 3 shows the proportion of explained variance and pooling factor for each level of each model, as

computed directly from posterior simulation draws as described in Section 2.5. We discuss the results for

each model in turn.

1. Simple linear regression:

• R2 is very low, suggesting a poorly fitting model, and λ is essentially zero, indicating that the

errors are estimated almost independently (which generally holds for a data-level regression model

in which there are many more data points than predictors). By comparison, the classical R2 for

this regression, plugging in the least-squares estimate for β, is 1− yT (I−H) y/yT Ic y = 0.07 (see

Section 3.1.1). The theoretical value for λ for this model, is 1 − (n−3)/(n−p−2) = 0.07 (see

Section 3.1.2). These results are all essentially the same because there is very little uncertainty

in β and σ when fitting this simple model, hence little is changed by moving to fully-Bayesian

inference.

2. One-way hierarchical model:

• At the data level, R2 shows some improvement over the simple linear regression model but is still

quite low. The pooling factor λ remains close to zero. If there were equal sample sizes within each

county, the theoretical value for R2 for this data level model, based on plugging in the estimators

(9), comes to 0.13 (see Section 3.2.1). Using the posterior simulations accounts for unequal sample

sizes and uncertainty in the variance parameters. Similarly, the approximate value for λ for this

data level model, plugging in the estimators (9), comes to 0.05 (see Section 3.2.2).
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Predictors included in the model R2 at each level: λ at each level:
y α β y α β

Basement (simple linear regression) 0.07 0.00
County (simple one-way hierarchical model) 0.12 0 0.04 0.54
Basement + county + uranium 0.21 0.73 0.03 0.77
Basement + county + uranium + basement× county 0.21 0.53 0.83 0.03 0.81 0.97

y

Model 4

Model 3

Model 2

Model 1

0 0.2 0.4 0.6 0.8 1

α

0 0.2 0.4 0.6 0.8 1

β

0 0.2 0.4 0.6 0.8 1

R2 at each level:

y

Model 4

Model 3

Model 2

Model 1

0 0.2 0.4 0.6 0.8 1

α

0 0.2 0.4 0.6 0.8 1

β

0 0.2 0.4 0.6 0.8 1

λ at each level:

Figure 3: Proportion of variance explained and pooling factor at the level of data y, county-level intercepts
α, and county-level slopes β, for each of four models fit to the Minnesota radon data. Blank entries indicate
variance components that are not present in the given model. Results shown in tabular and graphical forms.

• At the county level, R2 = 0 because this model has no county-level predictors. The pooling

factor λ = 0.54 indicates that the county mean estimates are weighted about equally between the

county sample means and the overall population mean. If there were equal sample sizes within

each county, the calculated value for λ for this county level model, plugging in the estimators (9),

comes to 0.37 (see Section 3.2.4. In this case, accounting for unequal sample sizes and uncertainty

in the variance parameters leads to a very different result.

3. Varying-intercept model:

• At the data level, R2 shows further improvement over the one-way hierarchical model, but still

remains quite low. The pooling factor λ remains close to zero.

• For the intercept model, R2 = 0.73 indicates that if the basement effects are restricted to be the

same in all counties, uranium level explains about three-quarters of the variation among counties.

The pooling factor implies that the county mean estimates are pooled on average about 80%

toward the regression line predicting the county means from their uranium levels.
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4. Varying-intercept, varying-slope model:

• At the data level, R2 is still quite low, indicating that much of the variation in the data remains

unexplained by the model (as can be seen in Figure 1), and λ is still close to zero.

• For the intercept model, R2 is close to 50%—indicating that uranium level explains about half the

variation among counties—and λ is about 80%, implying that there is little additional information

remaining about each county’s intercept. The estimates are pooled on average about 80% toward

the regression line (as is apparent in Figure 2a). R2 at the intercept level has decreased from the

previous model in which basement effects are restricted to be the same in all counties; allowing the

basement effects to vary by county means that there is less variation remaining between counties

for uranium level to explain.

• For the slope model, R2 is over 80%, implying that the uranium level explains much of the

systematic variation in the basement effects across counties. The pooling factor λ is almost all

the way to 1, which tells us that the slopes are almost entirely estimated from the county-level

model, with almost no additional information about the individual counties (as can be seen in

Figure 2b).

The fact that much of the information in R2 and λ is captured in Figures 1 and 2 should not be taken as

a flaw of these measures. Just as the correlation is a useful numerical summary of information available

in a scatterplot, the explained variance and pooling measures quickly summarize the explanatory power

and actions of a multilevel model, without being a substitute for more informative graphical displays.

5 Discussion

We suggest computing our measures for the proportion of variance explained at each level of a multilevel

model, (7), and the pooling factor at each level, (8). These can be easily calculated using posterior simulations

as detailed in Section 2.5 and illustrated in Appendix B. The measures of R2 and λ conveniently summarize

the fit at each level of the model and the degree to which estimates are pooled towards their population

models. Together, they clarify the role of predictors at different levels of a multilevel model. They can be

derived from a common framework of comparing variances at each level of the model, which also means that

they do not require the fitting of additional null models.

Expressions (7) and (8) are closely related to the usual definitions of adjusted R2 in simple linear regression

and shrinkage in balanced one-way hierarchical models. From this perspective, they unify the data-level

concept of R2 and the group-level concept of pooling or shrinkage, and also generalize these concepts to

account for uncertainty in the variance components. Further, as illustrated for the home radon application

in Section 4, they provide a useful tool for understanding the behavior of more complex multilevel models.

We define R2 and λ at each level of a multilevel model, where the error terms at each level are modeled as

independent. However, models such as the full varying-intercept, varying-slope model used in the home radon
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application can be generalized to allow for correlated intercepts and slopes. The assumption of uncorrelated

intercepts and slopes is often reasonable when there are useful predictors available for each grouping unit

(as is the case for the home radon application). Nevertheless, it would be useful to extend R2 and λ for use

in situations where such an assumption was not reasonable.

We have presented our R2 and λ measures in a Bayesian framework. However, they could also be evaluated

in a non-Bayesian framework using simulations from distributions representing estimates and measures of

uncertainty for the predicted values μk and the residuals εk. For example, these might be represented by

multivariate normal distributions with a point estimate for the mean and estimated covariance matrix for

the variance, or alternatively by bootstrap simulations.

We have derived connections to classical definitions of explained variance and shrinkage for models with

normal error distributions, and also illustrated our methods using a multilevel model with normal error

distributions at each level. However, (7) and (8) do not depend on any normality assumptions, and, in

principle, these measures are appropriate variance summaries for models with nonnormal error distributions

(see also Goldstein et al., 2002, and Browne et al., 2003). An alternative for generalized linear models could

be to develop analogous measures using deviances.
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A Theoretical computations

A.1 Classical regression

The classical normal linear regression model can be written as yi = (Xβ)i + εi, i = 1, . . . , n, with linear

predictors (Xβ)i and errors εi that are normal with zero mean and constant variance σ2. If we plug in

the least-squares estimate, β̂ = (XT X)−1XT y, then (7) simply reduces to the classical definition, R2 =

1 − yT (I−H) y/yT Ic y.

However, in a Bayesian context, we need to average over posterior uncertainty in β and σ. Under the

usual noninformative prior density that is uniform on (β, log σ), the posterior distribution for β (conditional

on σ) is N((XT X)−1XT y, σ2(XT X)−1). The marginal posterior distribution of σ2 is then a scaled inverse-

χ2 with degrees of freedom n−p and scale-factor yT (I−H) y/(n−p), where I is the n × n identity matrix,

H = X(XT X)−1XT and p is the number of columns of X . We proceed by first averaging over the posterior

distribution for β (conditional on σ), so that,

(n − 1)E
(

V
n

i=1
εi

)
= yT

c yc − 2yT
c XcE(β) + E(βT(XT

c Xc)β)

= yT
c yc − 2yT

c Xc(X
T X)−1XT y + σ2tr(XT

c Xc(X
T X)−1) +

yT X(XT X)−1XT
c Xc(X

T X)−1XT y

= yT Ic y − 2yT Hc y + σ2tr(Hc) + yT Hc y

= yT Ic y − yT Hc y + (p − 1)σ2

= yT (I − H) y + (p − 1)σ2,

(n − 1)E
(

V
n

i=1
yi

)
= (n − 1) V

n

i=1
yi

= yT Ic y,

where Ic is the n×n matrix with 1−1/n along the diagonal and −1/n off the diagonal, Hc = IcH , Xc = IcX ,

and yc = Ic y. Conditional on σ, the proportion of variance explained, (7), is then

R2 = 1 − yT (I − H) y + (p − 1)σ2

yT Ic y
.

Since the marginal posterior expected value for σ2 is yT (I −H) y/(n−p−2), the proportion of variance

explained, (7), fully averaging over posterior uncertainty in β and σ, is

R2 = 1 −
(

n − 3
n − p − 2

)
yT (I − H) y

yT Ic y
.

Similarly, conditional on σ,

(n − 1) V
n

i=1
E(εi) = yT (I − H) y,

and the pooling factor, (8), is then

λ = 1 − yT (I − H) y

yT (I − H) y + (p − 1)σ2
.
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Averaging over the marginal posterior distribution of σ, this becomes

λ = 1 − n − p − 2
n − 3

.

A.2 One-way hierarchical model

The one-way hierarchical model has the form, yij ∼ N(αj , σ
2
y), i = 1, . . . , nj , j = 1, . . . , J , with population

distribution αj ∼ N(μα, σ2
α). For simplicity, we assume that the within-group sample sizes nj are all equal

to a common value n. Under the usual noninformative prior density that is uniform on (μα, log σy, σα),

the posterior distribution for αj (conditional on σy and σα) is N(ωμα +(1−ω)ȳ.j, (1−ω)σ2
y/n), where

ω = 1 − σ2
α/(σ2

α+σ2
y/n) and ȳ.j is the sample mean within group j.

In what follows, it helps to set up matrix notation for this setting. Let y = (y11, . . . , yn1, . . . , y1J , . . . , ynJ)T

be the N -vector of responses, where N = nJ . Then if Ic is the N ×N matrix with 1−1/N along the diagonal

and −1/N off the diagonal, the mean-centered vector of responses can be written yc = Ic y. Similarly, let

α = (α1, . . . , α1, . . . , αJ , . . . , αJ , )T be an N -vector of J stacked sets of population group means, each set

containing n replicates, and let ȳ = (ȳ.1, . . . , ȳ.1, . . . , ȳ.J , . . . , ȳ.J)T be a similar N -vector of stacked sets

of sample group means. Then if Īc is the N × N block-diagonal matrix with n × n matrices containing

elements 1/n−1/N along the diagonal and n × n matrices containing elements −1/N off the diagonal, the

mean-centered vector of population means can be written αc = Īc α, and the mean-centered vector of sample

means can be written ȳc = Īc y. Finally, let Ī be the N × N block-diagonal matrix with n × n matrices

containing elements (1) along the diagonal and n × n matrices containing elements (0) off the diagonal, so

that the posterior distribution of αc (conditional on σy and σα) can be written N((1−ω)ȳc, Ī (1−ω)σ2
y/n).

We proceed in two stages. First, we average over the posterior distribution for α (conditional on σy

and σα) to find conditional expressions for (7) and (8) at each level of the model. In this case, further

averaging over the marginal posterior distributions of σy and σα does not result in closed-form solutions. As

an alternative, we then plug-in particular point estimates for the variance components to find unconditional

expressions.

At the data level, conditional on σy and σα,

(N − 1)E
(

V
i,j

(yij − αj)
)

= yT
c yc − 2yT

c E(αc) + E(αT
c αc)

= yT
c yc − 2yT

c (1 − ω)ȳc + tr(Ī) (1 − ω)σ2
y/n + (1 − ω)2ȳT

c ȳc

= yT Ic y + (ω2 − 1) yT Īc y + J(1 − ω)σ2
y

= yT (Ic − Īc) y + ω2 yT Īc y + J(1 − ω)σ2
y ,

(N − 1)E
(

V
i,j

yij

)
= (N − 1) V

i,j
yij

= yT Ic y.

So, conditional on σy and σα, the proportion of variance explained, (7), at the data level is

R2 = 1 − yT (Ic − Īc) y + ω2 yT Īc y + J(1 − ω)σ2
y

yT Ic y
.
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Similarly,

(N − 1) V
i,j

E(yij − αj) = yT (Ic − Īc) y + ω2 yT Īc y,

and conditional on σy and σα, the pooling factor, (8), at the data level is

λ = 1 − yT (Ic − Īc) y + ω2 yT Īc y

yT (Ic − Īc) y + ω2 yT Īc y + J(1 − ω)σ2
y

.

At the group level, conditional on σy and σα,

n(J − 1)E
(

V
J

j=1
(αj − μα)

)
= n(J − 1)E

(
V
J

j=1
αj

)

= (1 − ω)2 yT Īc y + J(1 − ω)σ2
y ,

n(J − 1) V
J

j=1
E(αj − μα) = (1 − ω)2 yT Īc y.

So, the proportion of variance explained, (7), is zero, while the pooling factor, (8), is

λ = 1 − (1 − ω) yT Īc y

(1 − ω) yT Īc y + J σ2
y

.

To find unconditional expressions, we plug-in the following point estimates for the variance components:

σ̂2
α + σ̂2

y/n =
yT Īc y

N
,

σ̂2
y =

yT (Ic − Īc) y

N
.

These estimators are just rescalings of the sample variance of the J group means and the pooled within-group

variance:

yT Īc y

N
=

(
J − 1

J

)
V
J

j=1
ȳ.j,

yT (Ic − Īc) y

N
=

(
n − 1

n

)
M
J

j=1
V
n

i=1
yij .

The plug-in estimate of (7) at the data level is then

R2 = 1 −
(

n + 1
n

)
yT (Ic − Īc) y

yT Ic y

= 1 − σ̂2
y/n

σ̂2
α/(n + 1) + σ̂2

y/n
,

while the plug-in estimate of (8) at the data level is

λ = 1 − n2 yT Īc y + yT (Ic − Īc) y

n(n + 1) yT Īc y

= 1 −
n

n+1 σ̂2
α + σ̂2

y/n

σ̂2
α + σ̂2

y/n
.

Finally, the plug-in estimate of (8) at the group level is

λ = 1 − n yT Īc y − yT (Ic − Īc) y

n yT Īc y

= 1 − σ̂2
α

σ̂2
α + σ̂2

y/n
,

which is equivalent to the standard definition of the group-level pooling factor for the basic hierarchical

model of Section 1.2 in which n = 1.
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B Implementation in Bugs and R

A key feature of the methods described here is their easy implementation in a simulation-based computing

environment. We illustrate by programming the R2 and λ computations for the radon model in the popular

Bayesian package Bugs (Spiegelhalter et al., 1994, 2003) as called from the general statistical computing

software R (R Development Core Team, 2003, Gelman, 2003).

From R, we first set up the model and run it in Bugs:

radon.data <- list ("N", "x", "y", "J", "county", "u")

radon.inits <- function () {list (a.raw=rnorm(J), b.raw=rnorm(J), sigma.y=runif(1),

gamma.0.raw=rnorm(1), gamma.1.raw=rnorm(1), sigma.a.raw=runif(1), xi.a=rnorm(1),

delta.0.raw=rnorm(1), delta.1.raw=rnorm(1), sigma.b.raw=runif(1), xi.b=rnorm(1))}

radon.parameters <- c ("a", "b", "sigma.y", "y.hat", "e.y",

"gamma.0", "gamma.1", "sigma.a", "a.hat", "e.a",

"delta.0", "delta.1", "sigma.b", "b.hat", "e.b")

radon.r2 <- bugs (radon.data, radon.inits, radon.parameters, "radon.r2.bug",

n.chains=3, n.iter=10000, n.thin=10)

It is then simple to use the resulting simulation draws to compute R2 and λ for each of the three levels

of the model:

attach.bugs (radon.r2)

# data level summaries

rsquared.y <- 1 - mean (apply (e.y, 1, var)) / var (y)

lambda.y <- 1 - var (apply (e.y, 2, mean)) / mean (apply (e.y, 1, var))

# summaries for the intercept model

rsquared.a <- 1 - mean (apply (e.a, 1, var)) / mean (apply (a, 1, var))

lambda.a <- 1 - var (apply (e.a, 2, mean)) / mean (apply (e.a, 1, var))

# summaries for the slope model

rsquared.b <- 1 - mean (apply (e.b, 1, var)) / mean (apply (b, 1, var))

lambda.b <- 1 - var (apply (e.b, 2, mean)) / mean (apply (e.b, 1, var))

print (round (c (rsquared.y, rsquared.a, rsquared.b), 2))

# 0.21 0.53 0.83

print (round (c (lambda.y, lambda.a, lambda.b), 2))

# 0.03 0.81 0.97

Finally, we show the Bugs code for the three-level model. The implementation shown below looks

somewhat complicated because we have used parameter expansion (Liu, Rubin, and Wu, 1998) to increase

the speed of convergence of the hierarchical model. The regression parameters a and b are defined in terms of

“raw” parameters araw, braw and multiplicative factors ξ. The parameter-expansion formulation is not needed

for computing R2 and λ but in practice is an important tool for speeding computations in hierarchical models

(see Gelman et al, 2003, Sections 11.9 and 15.4). The Gibbs sampler works faster by separately updating

the raw parameters and the ξ’s.

# File radon.r2.bug with Bugs code for radon model with varying intercept and slope

# Redundant multiplicative parameterization (Liu, Rubin, and Wu, 1998) used to improve

# speed of convergence: xi.a, xi.b, and the "raw" parameters are intermediate quantities.
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model {

for (i in 1:N){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- a[county[i]] + b[county[i]]*x[i]

e.y[i] <- y[i] - y.hat[i]

}

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 1000)

for (j in 1:J){

a[j] <- xi.a*a.raw[j]

a.raw[j] ~ dnorm (a.raw.hat[j], tau.a.raw)

a.raw.hat[j] <- gamma.0.raw + gamma.1.raw*u[j]

a.hat[j] <- xi.a*a.raw.hat[j]

e.a[j] <- a[j] - a.hat[j]

b[j] <- xi.b*b.raw[j]

b.raw[j] ~ dnorm (b.raw.hat[j], tau.b.raw)

b.raw.hat[j] <- delta.0.raw + delta.1.raw*u[j]

b.hat[j] <- xi.b*b.raw.hat[j]

e.b[j] <- b[j] - b.hat[j]

}

xi.a ~ dnorm (0, .0001)

gamma.0.raw ~ dnorm (0, .0001)

gamma.1.raw ~ dnorm (0, .0001)

gamma.0 <- xi.a*gamma.0.raw

gamma.1 <- xi.a*gamma.1.raw

tau.a.raw <- pow(sigma.a.raw, -2)

sigma.a.raw ~ dunif (0, 1000)

sigma.a <- abs(xi.a)*sigma.a.raw

xi.b ~ dnorm (0, .0001)

delta.0.raw ~ dnorm (0, .0001)

delta.1.raw ~ dnorm (0, .0001)

delta.0 <- xi.b*delta.0.raw

delta.1 <- xi.b*delta.1.raw

tau.b.raw <- pow(sigma.b.raw, -2)

sigma.b.raw ~ dunif (0, 1000)

sigma.b <- abs(xi.b)*sigma.b.raw

}
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