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Abstract

In this paper, we develop methods of the determination of the rank of
random matrix. Using the matrix perturbation theory to construct or find a
suitable bases of the kernel (null space) of the matrix and to determine the
limiting distribution of the estimator of the smallest singular values. We pro-
pose a new rank test for an unobserved matrix for which a root-N-consistent
estimator is available and construct a Wald-type test statistic (generalized
Wald test). The test, based on matrix perturbation theory, enable to deter-
mine how many singular values of the estimated matrix are insignificantly
di erent from zero and we fully characterise the asymptotic distribution of
the generalized Wald statistic under the most general conditions. We show
that it is chi-square distribution under the null. In particular case, when the
asymptotic covariance matrix has a Kronecker product form, the test statis-
tic is equivalent to likelihood ratio test statistic and to Multiplier Lagrange
test statistic. Two approaches to be considered are sequential testing strat-
egy and information theoretic criterion. We establish a strongly consistent
of the determination of the rank of matrix using the two approaches.
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1 Introduction

The main purpose of this paper is to propose some new tests for determining
the rank of random matrix. The rank of a matrix is of interest in a number of
applications in econometrics; for instance, the classical identification problem
in linear simultaneous-equations models involves the rank of a particular sub-
matrix of the reduced-form parameters and in a likelihood setting, the rank of
the information matrix relates to the identifiability of a vector of parameters
[Hsiao (1986), Anderson and Kunitomo (1992)]. Lewbel (1991) and Lewbel
and Perraudin (1995) have shown that several results in consumer theory can
depend on the rank of certain estimable matrices. In principal-component
and factor models, the number of factors or components in the model equals
the rank of covariance matrix, [Lawley and Maxwell (1971)]. Also, in ARMA
models, the maximum order of the AR and MA processes equals the rank
of a Hankel matrix of autocovariances and, following the Kronecker theory,
the rank of the Hankel matrix equals the number of unobserved state vari-
ables in the state-space representation of the time-series generating process,
see Kailath (1980); Aoki and Havenner (1991), Ratsimalahelo and Lardies
(1998).
Determining the rank of a matrix is a di cult task made more so if the

matrix is contaminated with errors, which is always the case in econometrics
and statistical applications based on estimated matrices. Gill and Lewbel
(1992), Cragg and Donald (1996) used a rank test based on the Gaussian
elimination Lower-Diagonal-Upper triangular (LDU) decomposition. Their
test has the advantage of possessing a limiting chi-squared distribution. Un-
fortunately the Gaussian elimination test tends to be conservative with type
1 error close to 0 when the sample size is small (see Ratsimalahelo (2002)).
Also, Cragg and Donald (1997) propose another test for the rank of matrix
based on a minimum chi-squared criterion. The procedure need to minimize
the objective function numerically which is often very di cult (see Ferguson
(1996)).
However it is well known that the rank of the matrix is equal to its num-
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ber of the non zero eigenvalues. Thus a formal test of rank can be expressed
as a test of the number of zero eigenvalues of the matrix. For this we shall
construct a test of rank based on the smallest eigenvalues of the estimated
matrix. One important property of the eigenvalues is that they are su cient
statistics invariant with respect to the multiplication of the matrix from the
left and right by any nonsingular matrices. But the test is more complicated
when the smallest eigenvalues has multiplicity. The asymptotic null distrib-
ution of Bartlett’s statistic is not chi-squared [see Schoot (1988)]. He used
an approximation based on some of its moments to obtain an asymptotically
chi-squared [see also Lawley (1956) and Anderson (1963)]. More recently
Anderson and Kunitomo (1994), Robin and Smith (2000) used a criterion
which is N times a smooth function of the smallest eigenvalues as the test
statistics

CRT = N n
j=k+1 f(

2
j)

namely characteristic roots test (CRT ) statistic, where N is the sample
size and the 2

j are the eigenvalues. The univariate function f(.) is require
to be smooth but otherwise arbitrary. This class of statistics includes many
test statistics as special cases including the likelihood ratio statistic, the
Lagrange Multiplier statistic and the Wald statistic, [see Anderson (1984),
Anderson and Kunitomo (1994)]. Follows, Robin and Smith (2000) the CRT
statistic is distributed asymptotically as a linear combination of independent
chi-squared random variables rather than a chi-square. The disadvantages of
this statistic are that the weights are unknown and must be estimated from
the sample, their estimation introduces variability and hence potentially less
accuracy, to the testing procedure. The test requires the percentiles of a
weighted chi-squared distribution for which computationally intensive algo-
rithms need be used. There is substantial literature to assist in computing
the tail probabilities of linear combination of chi-squared random variables,
(see Field (1993) for an introduction).
In this paper we shall consider the singular value decomposition of a ma-

trix which allows us to use the orthogonal reduction of the matrix. The
smallest singular value of a matrix can be seen as its distance to singularity.
We shall use the matrix perturbation theory to construct or find a suitable
bases of the kernel (null space) of the matrix and to determine the limiting
distribution of the estimator of the smallest singular values [see also Eaton
and Tyler (1994)]. For an unobserved matrix for which a root N consistent
estimator is available, the result of the matrix perturbation show us that the
smallest singular values converge asymptotically to zero in the order Op(N 1)
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and the corresponding left and right singular vectors converge asymptotically
in the order Op(N 1/2). So we shall give a rank test for an unobserved ma-
trix for which a root N consistent estimator is available and construct a
Wald-type tests statistic or in terms more appropriate generalized Wald tests
namely L(k). The test, based on matrix perturbation theory, allows us to
determine how many singular values of the estimated matrix are insignifi-
cantly di erent from zero and we shall show also that the test statistics is
asymptotically distributed as chi-square under the null.

Ratsimalahelo (2000) (2002) has been shown that the L(k) test statistics
is more appropriate as direct tests to determine the relevant instrumental
variables using the canonical correlations. Moreover, the performance of the
L(k) test statistics is similar to the statistic based on the Gaussian elimi-
nation decomposition (LDU) by Gill and Lewbel (1992), Cragg and Donald
(1996). This paper extends the results of Ratsimalahelo (2000) (2002) to the
case of weighting matrices and analysis the e ects of the weighting matrices
on the left and right singular vectors. We will completely characterise the
asymptotic distribution of the L(k) test statistics under general conditions.
By general conditions we mean that the estimator’s asymptotic covariance
matrix may be singular or more general setting unknown rank. In particular
case, when the asymptotic covariance matrix has a Kronecker product struc-
ture, the test statistics is asymptotically equivalent to likelihood ratio test
statistic and to Lagrange Multiplier test statistic.

It is well known that a sequential testing strategy does not lead to a
consistent estimate of the true rank matrix unless some adjustment is made
to the significance level, Robin and Smith (2000), Cragg and Donald (1997)
used the results of Potscher (1983) to establish the weakly consistent of the
sequential testing strategy. A more general result is presented in this paper,
we propose an appropriate significance level to obtain a strongly consistent
determination of the rank of matrix using the sequential testing procedure.
We shall present also an alternative approach to the information theoretic
criterion.
The remainder of the paper is structured as follows: In section 2, we

present the basic framework, the relevant material from hypothesis testing
and the matrix-perturbation results. In section 3, we derive the asymptotic
distribution of the smallest singular value. Based on this result a new rank
test is developed and we examine its properties. In section 4, we generalise
the previous results to the case of weighting matrices. We shall show that
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the test statistics is asymptotically equivalent to Likelihood ratio (LR) test
and to Lagrange Multiplier (LM) test when the covariance matrix has a
Kronecker structure. In sections 5, and 6 we show successively the strongly
consistent determination of the rank of matrix using the sequential testing
procedure and the information theoretic criterion. In section 7, we compare
the L(k) statistic with the CRT statistic of Anderson and Kunitomo (1994),
Robin and Smith (2000). Section 8 o ers some concluding remarks. Proofs
of the fundamental theorems, and propositions that provide the foundation
of the technique are assembled in the Appendix.
The following terminology and notation is used throughout the paper:

vec(A) stands for the vectorization of the m × n matrix A. The trace and
the rank of the matrix A are denoted by tr(A) and r(A). For a singular
matrix C, C+ denotes its Moore-Penrose generalized inverse. Convergence in
probability is denoted ” p ” and convergence in distribution by ” d ”.
For any matrix A, the linear space spanned by the columns (range) of A is
noted by R(A) and by N (A) the null space (kernel) of A; the linear space
spanned by the rows of A is noted by R(A ) and the kernel of A by N (A ).

2 Basic Framework

2.1 Hypothesis testing

Consider an unobserved matrix A (m × n) with unknown true rank k > 0,
without loss of generality, we assume m n.
Assumption 1: Let A be a root N consistent estimator of A, such that

N1/2vec(A A) d N (0, ). (1)

where themn×mn covariance matrix is non zero but possibly singular.

We wish to construct a test for the rank k of A, r(A). Thus, we wish to
test the null hypothesis

H0 : r(A) = k (2)

against the alternative
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H1 : r(A) > k.

which are also the hypotheses considered by Gill and Lewbel (1992),
Gragg and Donald (1996), Gragg and Donald (1997) and Robin and Smith
(2000).
The true rank of A is unknown but, with probability one, the rank of A,

a consistent estimator of A has full rank. Thus, the null hypothesis based
on a test using A is satisfied only asymptotically in N . Therefore, interest
attaches to a statistical test enabling us to determine the rank of A, given
the estimator A, from

H0 : r[A] = k . (3)

A well-conditioned means for evaluating the rank is to use the singular
value decomposition (SVD) and count the number of nonzero singular values.
Let the SVD of them×n (m n) real matrixA and with a rank k be denoted
[Golub and Van Loan (1996)].

A = UDV = [U1, U2]
D1 0
0 D2

V1
V2

(4.1)

where U = [U1, U2] of order (m×m) and V = [V1, V2] of order (n×n) are
orthogonal matrices and D = diag(D1, D2) is an m×n rectangular diagonal
matrix with decreasing non-negative diagonal elements i called the singular
values.
In fact D2 = O of order (m k) × (n k) zero matrix and D1 =

diag( 1, 2, ..., k) is order k with 1 2 ... k > 0 the non-zero
singular values of A. The number of positive singular values is the rank of A
that is k. Thus the SVD of A can also be written as

A = U1D1V1 (4.2)

The k columns of U1 are the left singular vectors corresponding to the
non-zero singular valuesD1, they span the range (column) space of A : R(A),
the m k columns of U2 are the left singular vectors corresponding to the
zero singular values D2 and span the null space (kernel) of A : N (A ).
Similarly, the k columns of V1 are the right singular vectors corresponding
to the non-zero singular values and span the row space of A (or the column
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space of A ) : R(A ), the n k columns of V2 are the right singular vectors
corresponding to the zero singular values and span the null space (kernel) of
A : N (A).
Because the orthogonality of U and V , the matrix D may be written as

D =
U1
U2

A V1 V2 =
U1AV1 U1AV2
U2AV1 U2AV2

(5)

Thus

D1 = U1AV1 = diag( 1, 2, ..., k) (6.1)

D2 = U2AV2 = Om k,n k (6.2)

and the o diagonal terms U1AV2 = Ok,n k and U2AV1 = Om k,k are
satisfied because AV2 = 0 (the columns of V2 span the null space of A) and
U2A = (A U2) = 0 (the columns of U2 span the null space of A ).
Thus under H0,the (m k)(n k) diagonal matrix D2 is identical to zero.

The hypothesis of rank condition H0 is equivalent to the hypothesis on the
smallest singular values

Hssv
0 : D2 = 0. (7)

According (6.2) the existence of a matrix V2 (or equivalently U2) such
thatD2 = 0 is equivalent to the hypothesis of rank conditionH0. This testing
problem is also mathematically equivalent to the hypothesis for the rank test.
This testing problem may be considered as the test of the hypothesis: “Are
the columns of V2 span the null space of A (equivalently are the columns of
U2 span the orthogonal complement of the range of A)”?
A) Subspaces
We shall first introduces the notions of subspace, column space, and rank

of matrix. As the (m × n) matrix A have a k-dimensional range or column
space (k = dimR(A)) which is a subspace of the m dimensional Euclidean
space Rm. The rank of the matrix is the dimension of this subspace that
is r(A) = k = dimR(A). Following the properties of the SVD of matrices
[Golub and Van Loan (1996)], for any vector x Rm, it can be decom-
posed into mutually orthogonal vectors x1 and x2 in the spaces spanned by
the columns of U1 and U2, respectively. These two spaces are respectively
k dimensional and (m k) dimensional orthogonal subspaces in Rm, and
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their direct sum is equal to Rm. Therefore, the orthogonal complement in
Rm of the column space of A is spanned by the columns of the m× (m k)
orthonormal matrix U2. Thus the null space (kernel) of A denoted by N (A )
is the orthogonal complement of R(A) in Rm and vice versa, hence U2 is
the orthogonal complement of U1. Moreover the rank of A is also equal to
k = m dimN (A ). We obtain the following important property

U2A = 0 R(A) = R(U1) (8.1)

The relation (8.1) means that the subspace spanned by the columns of
A is equal to the subspace spanned by the columns of U1 which implies
that the subspace spanned by the columns of U2 is equal to the orthogonal
complement of the column space of A : R(U2) = N (A ) and vice versa.
The same holds for Euclidean space Rn of which the row space of A

(or the column space of A ) is a k dimensional subspace and dimR(A ) =
dimR(A) = r(A). The two spaces spanned by the columns of V1 and V2 are
respectively k dimensional and (n k) dimensional orthogonal subspaces
in Rn and their direct sum is equal to Rn. The orthogonal complement in
Rn of the row space of A is spanned by the columns of the n × (n k)
orthonormal matrix V2. The null space (kernel) of A : N (A) is the orthogonal
complement of R(A ) in Rn, hence V2 is the orthogonal complement of V1.
Therefore r(A) = k = n dimN (A). We have also the following property

AV2 = 0 R(A ) = R(V1) (8.2)

The properties (8.1) and (8.2) of the SVD of A lead to test the rank of A.
The hypothesis for the rank test is also equivalent to the hypothesis for the
tests on the kernel, or on the range of a matrix [see also Gourieroux, Monfort
and Renault (1993)].

B) Test on the kernel of A.
The subspace spanned by the rows of A denoted by R(A ) is called the

right principal subspace and its dimension is equal to the rank ofA.According
(8.2) A and V1 matrix of the principal right singular vectors of A span the
same subspace. Hence inference on the dimension of R(A ) is equivalent to
inference on the dimension of R(V1) (the right principal subspace of A), so
an implicit form of the null hypothesis is given by:

Hker
0 : AV2 = 0. (9.1)
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where V2 is a matrix of the right singular vectors corresponding to the zero
singular values and span the null space (kernel) of A. The columns of V2 are
orthonormal so that V2V2 = In k. In other words V2 is an orthonormal basis
of N (A). This linear constraint (9.1) is often used in literature to determine
the rank of a matrix without reference to the SVD [see e.g. Gourieroux,
Monfort and Renault (1993), Gragg and Donald (1997)]. We see that the
SVD gives an interpretation of the constraint in terms on the orthonormal
basis for the kernel of A.
The null hypothesis may be put in a explicit form, since the (n×k)matrix

V1 has a full column rank and it is the orthogonal complement of V2 then
there exist a (m × k) matrix F has a rank k such that A = FV1 . Hence A
is decomposed from a product of rank-k matrices. Then the null hypothesis
can be written in explicit form

Hker
0 : A = FV1 . (9.2)

This parameterization of A corresponds to (4) or (6.1) with F = U1D1
where U1 is a matrix of the principal left singular vectors.

C) Test on the range of A.
Similarly, the left principal subspace is given by R(A) the subspace

spanned by the range of A. Its dimension is also equal to the rank of A,
then inference on the dimension of R(A) or equivalently on the dimension
of R(U1) (the left principal subspace of A) is based by Eq. (8.1) which
constitutes an implicit form of the null hypothesis:

Hran
0 : U2A = 0. (10.1)

where U2 is a matrix of the left singular vectors corresponding to the zero
singular values and span the orthogonal complement of the range of A. The
columns of U2 are orthonormal that is U2U2 = Im k. (U2 is an orthonormal
basis of N (A )). Since U1 is the orthogonal complement of U2 then there exist
a (n× k) matrix G has a rank k such that A = U1G . So the null hypothesis
can be written in explicit form

Hran
0 : A = U1G . (10.2)

It follows (4) or (6.1) that G = D1V1 .

Follows the both implicit forms of the null hypothesis of the kernel (9.1)
and the range (10.1), the rank of A is equal to the dimension of R(V1) and
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R(U1) respectively. Orthonormal right and left bases for the null-spaces of
A are V2 and U2 respectively.
The both explicit forms of the null hypothesis of the kernel (9.2) and

the range (10.2) of A are the SVD of the product of rank k matrices. One
such parameterization of the reduced rank of the matrix is commonly used
in the literature as A = where and are full column rank of dimension
(m × k) and (n × k), respectively. Thus, we may write the null hypothesis
(reduced rank) as in explicit form

Hrr
0 : A = ,

where , have respective a dimension (m×k), (n×k) and a rank equal
to k.
Now we can of course identify and in terms of principal singular

vectors and singular values. It follows (4) or (6.1) that in more general

= (U1D1)(D
1
1 V1)

for some specified 0 1.We see that the SVD of matrix is a natural
normalisation to determine the unknown matrices. For = 0 then = U1,
matrix of the principal left singular vectors and = D1V1 . For = 1 then
= V1 matrix of the principal right singular vectors and = U1D1. And for
= 1/2 the scales of the left and right principal singular vectors are identical

that is = U1D
1/2
1 and = D

1/2
1 V1 .

The test of the rank of the matrix A can be testing of one these null
hypotheses (H0,Hssv

0 , Hker
0 , H

ran
0 ). For the tests on the kernel and range of

matrix based either on the implicit or explicit forms of the hypotheses, we
must estimate the left and right singular vectors which are U1, U2, V1, and
V2. Note that the SVD of a real matrix is not unique, hence the matrices U
and V are not uniquely defined. However, the singular values are uniquely
determined, thus the matrix D is uniquely defined. In this paper, we are
interesting to test the null hypothesis on the smallest singular values Hssv

0 .
The test the null hypothesis Hssv

0 is based on estimating small singular
values and the associated right and left null vectors respectively.

2.2 Matrix Perturbation Results

Matrix perturbation analysis is concerned with the sensitivity of the eigenele-
ments of a matrix to perturbations in its components. In this section, we will
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introduce the matrix perturbation results used to define a detection scheme
that allows estimation of the number of zero singular values of A.
There is a well-developed mathematical theory on such matrix perturba-

tions as presented by Kato (1982), Golub and Van Loan (1996), Stewart and
Sun (1990). But this theory cannot easily be rewritten in a form suitable for
statistical inference. One is then interested in identifying the leading first-
order terms determining asymptotic distributions, as well as in establishing
easily interpretable bounds on second-order terms.
Following the singular value decomposition of a matrix A, this rank is

equal the number of nonzero singular values. If only an estimator A of A is
available, and the estimation error is small, one would still hope to be able to
recognize the ‘zero’ singular values. Indeed, the smaller the estimation error,
the easier such a decision would be. Matrix perturbation analysis formalizes
and confirms this intuition.
Let us write the perturbed matrix

A = A+ B (11)

where the matrix B is the perturbation of the matrix A. While the
m × n matrix A is assumed to have rank k n, the perturbation matrix
B is assumed to have small values but is of full rank. Then, using (1) and
following the central limit theorem, the perturbation matrix can be seen to
be Gaussian with elements having zero mean and variance of orderN 1. This
result implies that the dominant term in the matrix B is of order N 1/2,
denoted

B = Op(N
1/2). (12)

where Op(N a) (for 0) thus denotes a term whose elements have a
standard deviation of the order of N a.
We will consider the SVD of A by

A = UDV = [ U1 U2 ]
D1 0

0 D2

V 1

V 2

(13)

We partition the matrices conformably to the partitioning of U , V and
D that is U1 has k columns and U2 has m k columns.
The estimated matrix A almost certainly has full rank, although it will

be ” close ” to a matrix of rank k. Moreover, the spaces spanned by U1, U2,
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V1, and V2 are approximations to the subspaces corresponding U1, U2, V1,
and V2. The matrix diagonal can be written as

D =
U1
U2

A V1 V2 =
U 1AV1 U 1AV2
U 2AV1 U 2AV2

(14)

which satisfies the equations:

D1 = U 1AV1 = diag(ˆ1, ..., ˆk) such that ˆi ˆ
i+1.

D2 = U 2AV2 = diag(ˆk+1,..., ˆn) the smallest singular values estimated.
U 2AV1 = 0 = U 1AV2.

To study the stochastic behaviour of the smallest singular values esti-
mated of the matrix A, we must define . The perturbation matrix B has
zero mean and converges to zero (with probability one) as N increases. Each
of its components multiplied by N1/2 follows a central limit theorem and is
asymptotically Gaussian. Following (12), the di erence between correspond-
ing components of A and A is order N 1/2 and one must take as being of
this order of magnitude. We can write

A = A+ (A A) = A+ [(A A)/ ] = A+ B

where = N 1/2. Then for large N, 0 < < 1 and the elements of B’s
are bounded almost surely because of (1).

We use the matrix perturbation theory to construct or find a suitable
bases of the kernel (null space) of the matrix and to determine the limiting
distribution of the estimator of the smallest singular values.
This perturbation of A induces corresponding perturbations to the sin-

gular values { i, i = 1, .., n} and singular vectors {Ui, and Vi i = 1, .., n} of
A. We need to know more about the stochastic behaviour of the estimated
singular vectors corresponding to the n k smallest singular values. To this
end we would state the following proposition:

Proposition 1 . Let A = A+ B a perturbed matrix with B = Op(N
1/2).

Let U2 and V2 be the estimator of the left and right singular vectors as-
sociated with the n k smallest singular values estimated D2 of A, where
D2 = diag(ˆk+1,..., ˆn). Then for su ciently large N , there are bases de-
noted U2 (respectively V2) of null-spaces of AA (respectively A A) for which
the following relations hold:
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U2 = U2 +Op(N
1/2) (15.1)

V2 = V2 +Op(N
1/2) (15.2)

D2 = U 2BV2 +Op(N
1) (16)

where U2 = U2M and V2 = V2P , with M : (m k) × (m k) and
P : (n k)× (n k) are orthogonal matrices respectively..

Eq. (15) shows that given a perturbed matrix A and thus U2 and V2,
there exist perturbation-dependent exact bases U2 and V2 of the null-spaces
(kernel) of A that are close to U2 and V2. Eq. (16) shows that the same
bases realize the SVD of the matrix B up to first-order terms in . Then the
smallest singular values D2 of A have the same asymptotic distribution as
the right hand side in (16).

In other words, Eq. (15) shows that the estimated singular vectors U2
(respectively V2) corresponding to the smallest singular values are equal to
the singular vectors U2 (respectively V2) premultiplied by the orthogonal ma-
tricesM (respectively P ) plus other elements that disappear asymptotically.

To determine the distribution of the smallest singular values D2, we ex-
press D2 as function of the matrix A. To this end pre- and post-multiply
both sides of (11) by U2 and V2 respectively. Since the columns of V2 span
the null space of A, and the columns U2 span the null space of A implies
AV2 = AV2P = 0 and U2A =M U2A = 0, thus we have

U 2AV2 = U 2BV2. (17)

Using (17) we get the following corollary

Corollary 1 . The estimates of the perturbed smallest singular values can
be written as

D2 = U 2AV2 +Op(N
1) (18)
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where U2 and V2 are perturbation-dependent exact bases that are close
to U2 and V2.

We will now derive the statistical properties of perturbed smallest singular
values of A which will enable us to develop a statistical test.

3 Inference statistical of the smallest singular
values(SSV)

In this section, we will develop the statistical properties of perturbed smallest
singular values. Since the (m k)×(m k) and (n k)×(n k) matricesM
and P are orthogonal respectively, and the singular values are invariant under
left and right multiplication by orthogonal matrices, then we can expressed
the estimates of the smallest singular values as:

D2 = U2AV2 +Op(N
1) (19)

where U2 and V2 are an arbitrary bases of the null-spaces of A.
The smallest singular values D2 of A have the same asymptotic distribu-

tion as the right hand side in (19). The perturbed zero singular values can
be approximated (19), we propose to investigate the statistical properties of
this matrix. We denote by L

L = U2AV2 (20)

Eq. (20) defines a randommatrix L as a function of the randommatrix A,
the matrices U2 and V2 are non-random matrices since they contain singular
vectors of A.
We can now state the main result: first, we shall consider the limiting

distribution of N1/2L as N .

Theorem 1 . Let l = vecL, then the vector N1/2l is asymptotically normally
distributed with zero mean and (m k)(n k)× (m k)(n k) covariance
matrix given by

Q = (V2 U2) (V2 U2)
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N1/2l N (0, Q)
where Q is finite and positive definite.

Let Q the estimate of Q which can be obtained by replacing the unknown
values U2, V2 and by the corresponding estimate U2, V2 and the asymp-
totic distribution derived above can be used to construct a Wald-type test of
null hypothesis.

Theorem 2 . 1) Let , U2 and V2 be consistent estimates of , U2 and V2,
then

Q P Q

where Q = V 2 U2 V2 U2 .

2) Under the null hypothesis, and given the conditions of Theorem 1, then
(i) the test statistic is given by

L1(k) = Nl̂ Q
1l d 2

(m k)(n k)

(ii) L1(k) is a su cient statistic invariant under the orthogonal transfor-
mations on the bases U2 and V2.

The theorem shows that the test statistic L1(k) is independent of the
orthogonal transformations on the bases U2 and V2.We can thus evaluate it
using the perturbation-dependent bases U2 and V2.
Recall that the estimator of L is

L = U 2AV2 = D2 the diagonal matrix of the n k smallest
singular values of A and L is a consistent estimator of L.

3.1 The singular covariance matrix case

In subsection 3.2. we have assumed that the asymptotic covariance matrix
of the matrix A is non singular and in consequence the asymptotic covariance
matrixQ of the vectorN1/2l is finite and positive definite. In many situations
in econometrics and statistics this assumption may be seriously violated. In
this section the singular covariance matrix case is addressed.
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We assume that the rank of the asymptotic covariance matrix of di-
mension mn× mn is smaller than the number column mn that is r( ) =
mf < mn. In consequence, the asymptotic covariance matrix is singular.
Since the asymptotic covariance matrix Q is a function of a matrix then
in this case the matrix Q may be singular. So the test statistic may not have
an asymptotic 2 distribution under the null hypothesis. In this, we can
generalise the above result to take account the singularity of the matrix Q.
We shall now examine the condition in which the covariance matrix Q

may be singular. The covariance matrix Q = (V2 U2) (V2 U2) is of
dimension (m k)(n k)× (m k)(n k). The matrices U2 and V2 are full
column rank (m k) and (n k) respectively, hence the matrix (V2 U2)
has full column rank (m k)(n k). In addition the columns of (V2 U2) are
orthonormal so that it verifies (V2 U2) (V2 U2) = (Im k In k). The rank
of Q is equal to the minimum between the number of columns in (V2 U2)
and the rank of .

r(Q) = min{(m k)(n k);mf} (21)

Therefore, the covariance matrix Q will be nonsingular if the rank of
is greater than or equal to (m k)(n k).
We need the following proposition

Proposition 2 . Suppose that r( ) converge almost surely to r( ).

Then:
(i) + P + .
(ii) Q+ p Q+.

where Q+ = V 2 U2
+ V2 U2 .

The matrices + and Q+are the Moore-Penrose generalized inverses of
the matrices and Q respectively.

Indeed it is worth emphasizing the fact that the consistency of for
does not imply consistency of + for + since the Moore-Penrose inverse is
not a continuous function of its elements.
By using Proposition 2, we are able to construct a statistic which has a

central chi-squared distribution if, and only if, H0, is true.

Theorem 3 . Under the null hypothesis and given the conditions of Theorem
1 and Proposition 2, then, the test statistic is given by
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L1(k) = Nl̂ Q
+l d 2

v (22)

where Q+ = V 2 U2
+ V2 U2 and v are degrees of freedom with

v = min{(m k)(n k);mf} the rank of Q.
Note that the covariance matrix Q will be nonsingular if the rank of

is greater than or equal to (m k)(n k) and we will use the inverse of Q
instead a Moore-Penrose generalized inverse.

3.2 More general settings

In this section, we will consider the most general case in which we do not
explicit the assumptions about the rank or the structure of the asymptotic
covariance matrix . The rank condition of the matrix is a su cient con-
dition to obtain an estimator consistent of + its Moore-Penrose inverse,
see Andrews (1987), however there is a situation where this condition may
not be satisfied and consequently the asymptotic distribution of the L1(k)
statistic is not a chi-square. It may be possible to overcome the problem by
constructing or finding a suitable reduced rank estimator Q.We will use the
singular value decomposition and the perturbation matrix results to find a
suitable reduced rank estimator Q.

Theorem 4 . Let Q be a consistent estimator of Q and let S and T be the
(m k)(n k)× (m k)(n k) orthogonal matrices such that S QT = =
diag( 1, ..., vc) where 1 2. ... vc 0 and vc = (m k)(n k).

Under the null hypothesis, then the statistic test is given by

L1(k) = N
v

j=1

(tjl )(sj l)/ j
d 2

v

where v are degrees of freedom and being the rank of Q.

4 Extension. Weighting matrices

Let the matrix A be defined as the following scaled version of the matrix A

A = A
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where the(m ×m) and (n× n) weighting matrices and are positive
definite. Since the rank of a matrix is invariant by pre-and post-multiplication
by any nonsingular matrices, the rank of A is the same as that the rank of A,
namely, k.We note, also, that the singular values are invariant with respect to
the multiplication of the matrix A from the left and right by any nonsingular
matrices. The important property of the L(k) test statistics is that it is
invariant with respect to orthogonal transformations on the bases U2 and V2.
A nonsingular transformations on the bases U2 and V2 would in general a ect
the outcome of the L(k) test statistics. We therefore particularly interested
in left and right kernels of A computed from singular value decomposition of
matrix A

A = A = (U1, U2)
D1 0
0 0

V1
V2

the partition of matrix corresponding of the rank of A then the matrices
are partitioned in the same way as that (6) that is the order of the diagonal
matrix D1 is (k× k) and the order of the null matrix in the diagonal matrix
is (m k)× (n k).
From Eq.(1), the estimator A is a root-N consistent estimator of A, thus

the limiting behavior of A = A is characterised by

N1/2vec(A A ) = N1/2( )vec(A A) d N (0, ). (23)

where = ( ) ( ) is the mn×mn covariance matrix non zero
but possibly singular.
We apply a similar singular value decomposition to the matrix estimated

of A

A = (U1, U2)
D1 0

0 D2

V1
V2

the matrices are partitioned in the same way as that (6) and hence the
sizes of U1, U2, D1, D2, V1 and V2 are exactly the same as that of U1, U2,D1,
D2, V1 and V2.

The expression of the (m k)(n k) matrix L intervening in the pertur-
bation analysis is then

L = U2 A V2
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Following Theorem 1, the vector N1/2vecL is asymptotically normal with
zero mean and (m k)(n k)× (m k)(n k) covariance matrix Q defined
as

Q = (V2 U2) (V2 U2)

N1/2l N (0, Q )

This asymptotic covariance matrix Q is more general than defined in the
Theorem 1.
We now examine the condition in which the covariance matrix Q may be

singular. Since the matrix (V2 U2) has full column rank (m k)(n k) then
in general case, the rank of the (m k)(n k)× (m k)(n k) asymptotic
covariance matrix Q is equal to

r(Q ) = min{(m k)(n k); r( )}.

and in particular case where the m×m and n× n weighting matrices
and are nonsingular then the rank of Q is equal to

r(Q ) = min{(m k)(n k); r( )}.
Also, in that case the covariance matrix Q will be nonsingular if the rank

of is greater than or equal to (m k)(n k) this condition is the same
rank condition as the covariance matrix Q.

Let and be consistent estimator of and then following Proposition
2, the consistent estimator Q of Q can be obtained by replacing U2, V2 and
by the corresponding estimate U2, V2 and that is

Q = (V2 U2) (V2 U2)

where = ( ) ( ).

If we assume that the m k)(n k)× (m k)(n k) covariance matrix
Q is nonsingular then the test statistic is defined by

L2(k) = Nl̂ Q
1
l d 2

(m k)(n k)

if the null hypothesis is true.
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In the more general settings, in which we do not explicit the assumptions
about the rank or the structure of the asymptotic covariance matrix . We
use the singular value decomposition and the perturbation matrix result to
find a suitable reduced rank estimator Q . We can establish the following
theorem analogously to the Theorem 4.

Theorem 5 . Let Q be a consistent estimator of Q and let S and T be
the (m k)(n k)× (m k)(n k) orthogonal matrices, then the singular
value decomposition of Q is

S Q T = = diag( 1, ..., vc)

where 1 2. ... vc 0 and vc = (m k)(n k).
Under the null hypothesis, then the statistic test is given by

L2(k) = N
v

j=1

(t j l̂)(s j l)/ j
d 2

v

where v are degrees of freedom and being the rank of Q .
The Proof is similar to the Proof of Theorem 4.

4.1 A particular case: Kronecker structure of the co-
variance matrix

In this section, we will consider that the asymptotic covariance matrix
admits a Kronecker product form = . In many applications in econo-
metrics, one such Kronecker structure of the covariance matrix occurs, for
example, in linear multivariate regression model, in seemingly unrelated re-
gression (SURE) model and in linear simultaneous equations models (and
equivalently instrumental variables models), among others see Greene (2000).
The matrixA as be seen as a regression coe cient matrix and the matrix its
asymptotic covariance matrix. When the covariance matrix has a Kronecker
structure, the L2(k) test statistics can be simplified because the matrix L has
a multivariate normal standard distribution follows the appropriate choice of
the two weigthing matrices. In the sequel we will consider a more general
condition where the matrix may be singular. We will, firstly, examine the
conditions to normalise the asymptotic covariance matrix and show that the
asymptotic distribution of the L(k) statistic is 2 variable. In that case we
will establishes a relation of the L(k) statistic with other tests statistics such
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likelihood ratio and Lagrange multiplier statistics. Secondly, we will indicate
how the weighting matrices and should be chosen to normalise the ma-
trix . The choice of the two weighting matrices depends on the properties
of the matrices and as well as the singularity or not of the matrix .
These choice leads to satisfy that the matrix is equal to

= ( ) ( ) = I

the identity matrix . As the asymptotic covariance matrix may be decom-
posed into the Kronecker product form, we can be expressed the matrix
by

= ( )( )( ) = ( ) = I

Thus the matrix is equal to the identity matrix if and only if

( ) = I and ( ) = I

These conditions provides a natural standardization for the elements of
vec(A), hence

N1/2( )vec(A A) d N (0, I)

Consequently the asymptotic covariance matrix Q of the vector N1/2l is
also the identity matrix because the matrix V2 U2 is orthonormal, that is

Q = (V2 U2)I(V2 U2) = I I = I.

So that the asymptotic distribution of the random vector N1/2l is normal
with mean vector zero and variance matrix unity.

N1/2l d N(0, I).

Thus we have the following theorem.

Theorem 6 . Let , , U2 and V2, be the consistent estimator of the ma-
trices , , U2, and V2 respectively and the vector N1/2vecL is asymptotically
distributed in multivariate normal standard
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N1/2vecL = N1/2vec(U2 A V2)
d N(0, I).

Let 1 2 ... n be the ordered singular values of the matrix A .
Then, the test statistic is defined by

L3(k) = Nl̂ l = N
n

j=k+1

2

j
d 2

v (24)

where v are degrees of freedom with v being the rank of Q .

We note that the
2

j are also the eigenvalues of the matrix A A or AA .
This theorem shows that when the asymptotic covariance matrix has a
Kronecker structure then, the L3(k) test statistics can be simplified by N
times the sum of the n k smallest eigenvalues of A A or AA .
This result is more important, it shows that the L3(k) statistic is invariant

with respect the weigthing matrices , and , but the both matrices influence
the variance of the estimator of the matrix A. The both weigthing matrices
normalise the covariance matrix , and the rank of the identity matrix
depends on the properties of .
We will discuss below the number of degrees of freedom of 2 distribution

of L3(k) test statistics. It depends the rank of identity matrix, the variance
of the random vector N1/2l (multivariate normal standard). Before we will
establish the relation of the L3(k) test statistics with other statistics.

Corollary 2 . Under the null hypothesis, and given the conditions of The-
orem 6, then (i) the L3(k) test statistic is equivalent to the likelihood ra-

tio (LR) statistic LR = N n
j=k+1 ln(1 +

2

j) ,and to the Lagrange Multi-
plier (LM) statistic which is identical to the Rao score statistic in general

LM = N n
j=k+1

2
j

1+
2
j

(ii) the likelihood ratio (LR) and the Lagrange Multiplier (LM) statistics
are asymptotically distributed as a 2

v random variable.
Comments: 1. The normality assumption is not necessary to derive the

asymptotic distribution of these statistics.
2. The likelihood ratio statistic is derived by Anderson (1951) (1980) and

(1984) for testing the rank of a regression coe cient matrix in multivariate
normal linear model.
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3. These statistics have been proposed in the literature on canonical cor-
relation analysis, for testing the significance of the (n k) smallest canonical
correlations where j = j/(1

2
j)
1/2 and j is the jth smallest sample canon-

ical correlation [Anderson (1984, ch. 12) (1999), Robinson (1973)] among
others.
4. These statistics have been proposed, also, in the multivariate regression

model for testing linear restrictions [Anderson (1984, ch.8)] and in simulta-
neous equation models for testing overidentification and predeterminedness
[Anderson and Kunitomo (1992), (1994)].

So far, we have made no other assumption about except that it is de-
composed into Kronecker product form. We next develop another properties
of the L3(k) test statistic. We will indicate how the weighting matrices and
should be chosen to normalise the asymptotic covariance matrix and we

will also determine the number of degrees of freedom of the chi-square distri-
bution of test statistics. The development that follows depends on whether
the covariance matrix is nonsingular or singular. The two cases will be
considered separately.
Since the covariance matrix can be represented by the Kronecker prod-

uct of two matrices and , we have then the following possibilities:
1) both and nonsingular,
2) (i) nonsingular and singular,
(ii) singular and nonsingular
(iii) both and singular.

4.1.1 The covariance matrix is nonsingular

First, we will consider that the two matrices and are positive definite.
Since the Kronecker product of two positive definite matrices is positive def-
inite, so that is positive definite, then in this case the choice of the two
weighting matrices and is easy. If the (m×m) and (n× n) matrices
and are positive definite then there exist two nonsingular matrices and
such that

= Im and = In

thus the matrix is equal to = Im In = Imn the identity ma-
trix. Often, in practice one use the square root of the matrices and
such that = ( 1/2)( 1/2) and = ( 1/2)( 1/2) where the matrices 1/2
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and 1/2 are the square-root matrices respectively. In this case one can
choice = 1/2 and = 1/2 such that ( 1/2) ( 1/2) = Im and
( 1/2) ( 1/2) = In then = Im In = Imn.
In consequence the asymptotic covariance matrix Q of the vector N1/2l

is also the identity matrix

Q = (V2 U2)Imn(V2 U2) = In k Im k = I(n k)(m k). (25)

and the L3(k) test statistic has a limiting chi-square distribution with
v = (m k)(n k) as the degrees of freedom.

4.1.2 The covariance matrix is singular

Next, we will consider the case where the asymptotic covariance matrix
is singular, in this case unless one the two matrices and are positive
semidefinite.
(i) Suppose that the (m×m) matrix is positive definite and the (n×

n) matrix positive semidefinite and r( ) = s < n. Using the square
root of the matrix that is = ( 1/2)( 1/2) where the (s × n) matrix
1/2 is the square-root matrix. In this case, one can choice = +1/2 the
Moore-Penrose generalized inverse of 1/2 and = ( 1/2) 1. Thus, we have
( +1/2) ( +1/2) = Is. Then the matrix is equal to = Im Is = Ims
and the asymptotic covariance matrix Q of the vector N1/2l is

Q = (V2 U2)Ims(V2 U2) = Iv (26)

The rank of the matrix Q is equal to r(Q ) = v = min{(m k)× (n
k);ms}. Thus the L3(k) test statistic has a limiting chi-square distribution
with v = min{(m k)× (n k);ms} degrees of freedom.
(ii) Alternatively, suppose that the (m ×m) matrix is positive semi-

definite and r( ) = r < m and the matrix positive definite. One can
choice = 1/2 and = +1/2 the Moore-Penrose generalized inverse of
the (r ×m) matrix 1/2 such that ( +1/2) ( +1/2) = Ir. The rank of the
matrix Q is equal to r(Q ) = v = min{(m k)× (n k); rn} which is also
the degrees of freedom of the test statistic L3(k).
(iii) More generally, the (m×m) and (n×n)matrices and are positive

semidefinite with r( ) = r < m, and r( ) = s < n. Also using the square
root of the two matrices and . One can choice = +1/2 and = +1/2

the Moore-Penrose generalized inverse of the (r ×m) and (s × n) matrices
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1/2 and 1/2 respectively. Then r(Q ) = v = min{(m k) × (n k); rs}
which is also the degrees of freedom of the L3(k) test statistic.

Remark 1 These results are particularly important, the L3(k) statistic gen-
eralise the canonical correlation analysis statistics and the statistics for test-
ing linear restrictions in the multivariate regression model in which the co-
variance matrix is singular.

When the asymptotic covariance matrix has a Kronecker structure, the
weighting matrices and can be chosen in di erent ways following the
property of the matrix . All these results are gathered in the following
table

Table 1. Weighting matrices corresponding to Kronecker structure of the
covariance matrix .

Covariance matrix = .
1/2 1/2 and are non singular

+1/2 1/2 singular and non singular
1/2 +1/2 nonsingular and singular

+1/2 +1/2 and are singular

5 Strong consistency for a sequential testing
procedure

It is well known that a sequential testing procedure does not lead to a consis-
tent estimate of the true rank matrix unless some adjustment is made to the
significance level, [see Cragg and Donald (1997); Robin and Smith (2000)].
In this section we will formalise the testing procedures that empirical re-
searchers often use in a less formal, and sometimes vague fashion. We will
also establish su cient conditions for strong consistency.
We consider tests based on the L(k) statistics where L(k) denoted all

tests statistics L1(k), L2(k), and L3(k). Starting with k = 1, we carry out
tests with progressively larger k until we find a test that does not reject the
null hypothesis that the rank of the matrix A is k. Let k be the value of k
for the first test we find that does not rejected This is a sequential testing
procedure of the rank of the matrix.
The L(k) test statistic has an asymptotic chi-square distribution with v

degrees of freedom. We take kCN 0 the critical value employed with
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the test statistic L(k) when k = k and the sample size is N. The value k

represent the quantile of a chi-squared distribution with v degrees of freedom
and CN is a predetermined sequence of numbers whose choice is discussed
below. So that kCN be the (1 ) quantile of a chi-squared distribution.
Let k {1, 2, ...k 1} be such that L(k) kCN k > k with k

{1, 2, ...n}, L(k) kCN and k = k. In words, k the estimator of the true
rank of the matrix A is the smallest value of k for which some L(k) tests do
not reject the null hypothesis.
For a strongly consistent estimate of the rank of the matrix A, we assume

the function CN satisfy:

Assumption C (i) CN > 0; (ii)CNN 0; and (iii) CN
log logN

.

Remark 2 :

1) The critical value kCN is similar to the significance level N satisfying
N 0 and ln N = o(N) of Theorem 5.8 of Potscher (1983) for weak
consistency of Lagrange multiplier (LM) tests for lag selection in ARMA
models.
2) The conditions (i)-(iii) admit a large range of possible choices of CN .

In the simulation results of Ratsimalahelo (2002), we took CN = logN.

The strongly consistent estimate of the rank of matrix requires the law
of iterated logarithm. As Gragg and Donald (1997) and Nishii (1988) and
without loss of generality, we assume that the matrix estimated A follows the
law of iterated logarithm (LIL). Zhao, Krishnaiah and Bai (1986) have been
shown that if the matrix estimated follows the law of iterated logarithm then
the corresponding singular values follows also the law of iterated logarithm.
We now state the assumption under which the results below hold.

Assumption LIL. For the matrix estimated A and its singular values i,
the following relations hold with probability one

A A = O(log logN/N)1/2

i i = O(log logN/N)
1/2 for i = 1, ..., n.

where i = 0 for i > k then we have k+1 = O(log logN/N)
1/2.

For any k = 1, ..., k 1, the null hypothesis r(A) = k is rejected almost
surely as N and let k = k, then the null hypothesis does not rejected
almost surely as N . Thus k is the value for which L(k) test does not
reject. The strong consistency of k is established in the following theorem.
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Theorem 7 . Let k the value of the quantile of a chi-squared distribution
with v degrees of freedom and k0 denote the true rank of A. Suppose Assump-
tions C and LIL hold. Then under the null hypothesis, with probability one,
limN L(k)/CN k if k k0 and limN L(k)/CN k if k = k0.

This theorem shows that the L(k) statistics provides a strongly consistent
estimate of k0 the true rank of A.

6 The model selection approach

We now consider the approach of the information criteria to estimate the
rank of matrix
Define the following criteria

IC(k,CN) = L(k) + (k)CN for k = 0, 1, ..., n 1
where the function (k) is strictly increasing and the constants CN is

deterministic penalty term.
Let k the estimator of k that minimise the criteria function

k = argmin IC(k,CN) for k = 0, 1, ..., n 1

Next we will prove that k is a consistent estimator of k. This depends on
the functions (k) and CN . Thus the essential part of the criteria function is
the penalty term (k)CN . The higher we specify the penalty term, the lower
the risk of overestimating the rank and the higher the risk of underestimating
the rank. They are assumed to satisfy:

Assumption IC: (a) (k) is strictly increasing (b) CN satisfies the condi-
tions (i) - (iii) of the Assumption C.

In application of the IC(k,CN) criteria, practitioners will have to specify
the functions (k) and CN and the Theorem provides an asymptotic justi-
fication for many di erent values of the penalty terms. In statistical litera-
ture, some fixed choices of CN have been suggested such as CN = 2 by Akaike
(1974) (AIC); CN = log(N) by Schwarz (1978) (BIC) and CN = c log log(N)
for some c > 2 by Hannan and Quinn (1979) (HQIC).
In the simulation results of Ratsimalahelo (2002), we took c = 2.02 in the

specification of the HQICcriterion.
Some comments on the choice of CN have been made by Bai, Krisnhaiah,

and Zhao (1989). The AIC procedure does not satisfy Assumption IC(b)
because CN , in consequence AIC is not consistent. As a result there
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will generally be a positive probability of overestimating the rank of the
matrix.
Now we will give the following theorem concerning strong consistency of

the estimator k.

Theorem 8 . Let k0 denote the true rank of A and k the estimated rank
obtained from Eq. (3). Suppose Assumptions LIL and IC hold, then limN

k = k0 a.s.

Note that the strong consistency of k, follows P (limN k = k0) = 1.
This result shows that the underestimation and the overestimation of the
true rank is not possible asymptotically.

7 Relation with the characteristic roots test
(CRT)

The characteristic roots test statistic is based of the eigenvalues of the ma-
trix quadratic form A A where the m × m and n × n matrices and
are positive definite. Let 2

1
2
2 ... 2

n 0 be the roots of the
matrix quadratic form, the 2

j for j = 1, ..., n are also the solutions of the
determinantal equation | A A 2 1 |= 0. Because the matrices and
are non singular, the rank of the matrix quadratic form is equal to the

rank of the matrix A which characterise the null hypothesis H0 r(A) = k.
Procedures used to estimate the rank from H0 involve testing a sequence of
rank hypotheses defined in terms of the nullity of some of the eigenvalues of
the matrix quadratic form. Anderson and Kunitomo (1994) and Robin and
Smith (2000) used a criterion which is N times a smooth function of the n k
smallest roots f( 2

k+1, ...,
2
n) as the test statistic

CRT = N n
j=k+1 f(

2
j)

namely characteristic roots test statistic, where the function f(.) satisfies
(i) f(0, ..., 0) = 0, (ii) f( 2

k+1, ...,
2
n) is totally di erentiable at ( 2

k+1, ...,
2
n) =

(0, ..., 0) and (iii) f( 2
k+1,...,

2
n)

2
j1

2
k+1=...= 2

n=0 = 1, j = k + 1, ..., n. [see
Anderson and Kunitomo (1994)].
This class of statistics includes many test statistics as special cases in-

cluding the likelihood ratio statistic, the Lagrange Multiplier statistic, and
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the Wald statistic 1.
We will shown in this section the relation between the CRT statistic and

our L2(k) statistic (using the weighting matrices).
Consider the following decomposition of the matrix weigthed A

A =W O (27)

where the m × m and n × n matrices W and O are nonsingular and
= diag( 1, 2, ..., n) with 1 2 , ..., n.
Since the m ×m and n × n matrices and are nonsingular, pre-and

post-multiply (27) by 1 and 1 respectively, we obtain

A = 1W O 1 (28)

If we impose the orthonormalization conditions

W 1W = I and O 1O = I (29)

then, pre-and post-multiply (28) by W and O respectively, we gets

W AO = (30)

Accordingly from equations (29) and (30), let oi and wi obey the ortho-
normality conditions wi

1wj = oi
1oj = ij where ij is the Kronecker

delta and wiAoi = i = oiA wi. The resulting equations are

Aoi i
1wi = 0 (31.1)

i
1oi +A wi = 0 (31.2)

The following proposition show the relation between the eigenvalues of
the matrix quadratic form A A (or equivalently A A) and the singular
values of the matrix A = A .

Proposition 3 . Let the m ×m matrix W of eigenvectors of A A in the
metric of 1and the n×n matrix O of eigenvectors of A A in the metric of

1 satisfies the orthonormalization conditions W 1W = I and O 1O =
I. Then the singular values of the matrix A : 1, 2, ..., n are the square

1It is possible to consider more general class of statistics. (See ch. 8 of Anderson
(1984)).
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roots of 2
1,

2
2, ...,

2
n the latent roots of A A or equivalently the latent roots

of A A.

The relation between the CRT statistic and our L2(k) statistic follows
from the fact the singular values of the weighted matrix A that is =
diag( 1, 2, ..., n) = D are the square roots of eigenvalues of the matrix
quadratic form A A (or equivalently A A). The smallest singular values
are contained in D2 It follows from (30) that the limiting distribution of the
smallest singular values D2 is the same as the limiting distribution of the
corresponding singular values of the (m k)× (n k) matrix

NW2(A A)O2 (32)

where W2 and O2 are the matrices of eigenvectors corresponding to the
n k smallest eigenvalues.
The asymptotic distribution of CRT is the same as that of the sum of

the squares of the singular values of (32) which can be expressed as N ×
trace{[W2(A A)O2][W2(A A)O2] }. Therefore, the asymptotic distribution
of CRT is the same as the asymptotic of Nvec[W2(A A)O2] vec[W2(A

A)O2]. Because Nvec[W2(A A)O2] has a normal limiting distribution
with zero means and covariance matrix (O2 W2) (O2 W2) then the CRT
statistic is asymptotically distributed as linear combination of independent
chi-squared random variables with one degree of freedom [see Johnson and
Kotz (1970) p. 150. e.g. Lemma 3.2 of Vuong (1989)]2. The weights are the
nonzero eigenvalues of the matrix (O2 W2) (O2 W2).
This procedure is more complicated because the asymptotic critical values

of the test statistic are not tabulated. The test requires the percentiles of a
weighted chi-squared distribution for which computationally intensive algo-
rithms need be used. Moreover the weight estimation introduces variability
and hence potentially less accuracy, to the testing procedure.
To construct our L2(k) statistic we use the matrix perturbation theory

to determine the limiting distribution of the smallest singular values D2.
The result show that the limiting distribution of the smallest singular values
of D2 is the same as the limiting distribution the (m k)(n k) matrix
L = U2 A V2.We use the properties statistical of the matrix L to construct

2see also theorem 3.2 of Robin and Smith (2000)
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the L2(k) statistic. So the test statistic can be obtain straightforwardly with-
out a particular smooth function and without the orthonormalization condi-
tions, as is well known the orthonormalization condition have no economic
interpretation. Moreover the limiting distribution of the L2(k) statistic is a
standard chi square distribution. In addition, when the covariance matrix
has a Kronecker structure, the L2(k) statistic can be simplified even if the
covariance matrix is singular and in that case it is asymptotically equivalent
to the LR and LM statistics.

8 Conclusion

In this paper, we have proposed new and general methods for determining
the rank of an unobserved matrix for which a root N consistent estimator
is available. We use the matrix perturbation theory to construct or find a
suitable bases of the kernel of the matrix and to determine the limiting distri-
bution of the estimator of the smallest singular values. The statistic, based
on matrix perturbation results, is asymptotically distributed as chi-square
under the null. We have fully characterized the asymptotic of the general-
ized Wald statistic under the most general conditions. The test statistic has
desirables properties that it is (i) a statistic su cient invariant under the
orthogonal transformations, (ii) asymptotically equivalent to LR and LM
statistics when the covariance matrix has a Kronecker structure even if the
asymptotic covariance matrix is singular.
Two approaches have been considered to estimate the rank of random

matrix, sequential testing strategy and information theoretic criterion pro-
cedures, we have been established conditions for strong consistency of both
procedures.
This study provides a theoretical justification for a number of statistical

tests for which one can determine how many singular values of an estimated
matrix should be declared equal to zero.
We have assumed that the dimensionsm and n of the matrix A are finite,

however most of the results will still hold when the dimensions are not finite,
provide A is a compact operator.
The test proposed in this paper may be particularly useful in determining

the dimension of the cointegrating space which are very commonly used in
modelling time series.
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Appendix of Proofs.

Proof of Theorem 4.
Suppose that the (m k)(n k) × (m k)(n k) covariance matrix

Q have rank v = min{(m k)(n k);mf} and let S = S1, S2 and
T = T1, T2 are the (m k)(n k)× (m k)(n k) orthogonal matrices.
Then the singular value decomposition of Q is

Q = S1 1T1

where 1 is vxv nonsingular diagonal matrix with diagonal elements 1

... v > 0. The Moore-Penrose generalized inverse of Q is given by

Q+ = T1
1

1 S1

and it is unique Golub and Van Loan (1996).
The singular value decomposition of the estimator of the covariance ma-

trix Q is

Q = S1 1T1 + S2 2T2

Following Theorem 2, Q p Q implies S p S, T p T and p

and hence + p +. It follows that
Q+ p Q+ where Q+ = T1 1

1 S1.
Hence
Nl̂ Q+l = Nl T1

1
1 S1l

d 2
v.

Proof of Theorem 6.
The Proof is immediate, if ( ) = I and ( ) = I then N1/2A d

N(0, I) and consequently N1/2l d N(0, I). The test statistic L(k) is de-
fined by L3(k) = Nl̂ l = N(vecD2) (vecD2) = Ntr(D2D2).

Proof of Corollary.
Part (i), under the null hypothesis, the n k smallest eigenvalues converge

to zero, then the L3(k) is asymptotically equivalent to LR and to LM because

ln(1 +
2

j)
2

j and
2

j

2
j

1+
2
j

.

Part (ii), the likelihood ratio (LR) and the Lagrange Multiplier (LM)
have identical limiting distributions to that of the L3(k) statistic.

Proof of Proposition 3.
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According (26.2) we have ioi = A wi premultiply by A, one obtain
iAoi = A A wi then following (26.1) one gets

2
i

1wi = A A wi thus we
have the problem of the generalized eigenvalues (A A 2

i
1)wi = 0 where

the 2
i are the root of the determinantal equation | A A 2

i
1 |= 0 and

wi are the corresponding eigenvectors of A A in the metric of 1.
Similarly A Aoi = iA wi =

2
i

1oi thus (A A 2
i

1)oi = 0 where
the 2

i are the root of the determinantal equation | A A 2
i

1 |= 0 and oi
are the corresponding eigenvectors of A A in the metric of 1.
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