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Abstract

Classical regression analysis uses partial coefficients to measure the influences of some vari-
ables (regressors) on another variable (regressand). However, a descriptive point of view
shows that these coefficients are very bad measures of influence. Their interpretation as an
average change of the regressand is only valid if the regressors are weakly correlated, and they
are useless when the degree of multicollinearity is high. Despite these obvious flaws there is a
lack of alternative ideas to measure influences. On that score this paper proposes two new
coefficients of influence: (1) A supplementary coefficient measures the additional influence of
a regressor when certain variables are already taken into account. (2) A particular coefficient,
which is a mean of certain supplementary coefficients, allocates the influence of a regressor
within the collective influence of all regressors. Both new coefficients can directly be inter-
preted as average changes of the regressand.

1 Please do not cite this paper! Comments are welcome. E-Mail: Norman.Fickel@wiso.uni-erlangen.de
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1 Introduction

Statistical methodology can be divided into two realms: descriptive and inductive statistics.
Inductive statistics is characterized by the usage of probability theory to make stochastic sig-
nificance test and confidence intervals available. To utilize these stochastic methods, some
textbooks present multiple regression analysis as a tool of inductive statistics. However, in
many applications, especially when social and economical data are concerned, the assump-
tions underlying these stochastic methods are not compelling and often they are obviously
violated (for important examples cf. Hahn and Meeker 1993). Despite this fact, descriptive
methods have not been developed adequately in statistical theory for the last decades since the
current paradigm demands new methods to be stochastically motivated. This point of view
appeared in 1944 when Haavelmo wrote in his preface of “The Probability Approach in
Econometrics” (1994: iii): “For no tool developed in the theory of statistics has any meaning –
except, perhaps, for descriptive purposes – without being referred to some stochastic scheme.”
[emphases as in the original]. This paradigm has been widely spread for several reasons in
spite of its decreasing usefulness in applied statistics (cf. Nester 1996). I think the time has
come to focus on new forms of descriptive analysis more intensely. To achieve this, this paper
makes use of the framework of neodescriptive statistics.

1.1 Neodescriptive Statistics

Kruskal (1987: 6) defines neodescriptive statistics as “serious consideration, without shame,
of what functionals on distributions are useful in analysis and understanding”. This short
statement is completed by the following characterization (Fickel 1999: 30–36) which reshapes
the three levels of indication, determination and inference as proposed by Mosteller and Tu-
key (1977: 21f):

� Indication: The data set given is aggregated to one or more numbers indicating a specific
property of this data set. This property is directly connected to the real-world application.

� Determination: The indication's result can be assessed by some coefficient of determina-
tion which describes how expressive the indication is. This helps the analyst to discrimi-
nate between substantial and unimportant coefficients.

� Interpretation: To achieve an intuitive understanding of the data set, a verbal statement of
the measurement’s meaning is provided. As far as a causal language is used, the depend-
ence of the applied concept is clearly pointed out.

The notion of neodescriptivism gives space to alternative ideas of measurement, significance
and usage of causal language, and so the framework of statistics is enlarged when the focus is
not on stochastic models. This idea is somewhat related to the theory of fuzzy sets since the
concept of determination can be seen as a special case of a fuzzy set which refers to the state-
ment “The indication’s value describes the data expressively”. So a high value of determina-
tion says that the indication is highly expressive whereas a low determination renders the indi-
cation relatively inexpressive.
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What is neodescriptive regression analysis like? Descriptive elements of regression analyses
become neodescriptive when they are combined according to the above characterization. For
example, the usage of simple regression can be summarized as follows (cf. 4.10.2):

� Indication: The slope coefficient indicates the regressor’s influence which is measured in
terms of the scaling units of regressor and regressand.

� Determination: The percentage of the regressand’s variance explained by the regression
equation gives a coefficient of determination which helps to assess the meaning of the
slope coefficient.

� Interpretation: The indication describes the average change of the regressand, when the
regressor is varied by one scaling unit. This statement is based on the correlation in the
data and does not imply any causal relationship.

When transferring these elements to multiple regression, the problem of multicollinearity can
arise.

1.2 Problem of Multicollinearity

The aim of regression analysis is to measure the influences of various regressors on the re-
gressand. To achieve this, for every regressor the ordinary least squares method provides a
coefficient which can be interpreted as average change of the regressand when the regressor is
varied by one unit. In simple regression analysis, every regressor is individually handled and
so the influences of other regressors are ignored, which gives a total coefficient. In multiple
regression analysis, the regressor is adjusted for the other regressors’ influences and so its
partial coefficient describes the influence when the other regressors are “held constant”. How-
ever, this condition of holding other regressors constant decisively depends on the degree of
multicollinearity in the data set, that is the extent to which the regressors are correlated among
one another. Three levels of multicollinearity can be distinguished (cf. Mosteller and Tukey
1977: 270ff; Gunst 1983; Morrow-Howell 1994):

1. Weak Multicollinearity: The partial coefficient differs only slightly from the total coeffi-
cient and so multiple regression does not give more information than separated simple re-
gressions do. Essentially, the interpretation of both coefficients is the same.

2. Medium Multicollinearity: Partial and total coefficient have noticeably different values.
By assuming the stochastic standard model of regression, it might be said that the partial
coefficient is “true” and the total coefficient is biased. Yet the descriptive meaning of the
total coefficient is always clear whereas in this case the partial coefficient often has a du-
bious interpretation due to the existing correlation.

3. Strong Multicollinearity: When multicollinearity is perfect, partial coefficients cannot be
determined. Otherwise the condition of “holding the other regressors constant” is mean-
ingless. In addition, small changes in the data can sharply effect the value of a partial coef-
ficient.

Literature knows two strategies to handle multicollinearity: A first is to determine partial coef-
ficients for an altered set of regressors which are less correlated. For example, the forward
selection algorithm only chooses a subset of the initial regressors, cluster analysis provides
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cluster representatives, and possibly the regressors have interpretable transformations which
are less correlated. A second strategy is to keep the initial regressors and modify the least
square method to get varied partial coefficients. These modification methods can be catego-
rized as follows:

a) Shrinkage Type: Multicollinearity often causes unplausibly large partial coefficients. So
shrinkage methods, such as ridge regression, systematically give smaller coefficients. A
certain parameter allows to select the degree of smallness. A resulting coefficient can be
interpreted as shrinked average change of the regressand. (Cf. Hoerl and Kennard 1970;
Kadiyala and Oberhelman 1994; Breiman 1995; Tibshirani 1996.)

b) Suppression Type: Principal component analysis might give interpretable results for some
data sets. In this case the influences can be adjusted for “irrelevant” parts not belonging to
the principal components chosen. A small number of principal components gives a
stronger adjustment. The resulting coefficient is interpreted as an average change of the
regressand when certain influences are suppressed. (Cf. Hawkins 1973; Hadi and Ling
1998.)

c) Mixed Type: The types of shrinkage and suppression can be combined, which yields coef-
ficients modified twice. (Cf. Stone and Brooks 1990.)

Modification methods can give convincing results in certain applications. Yet they rely on
assumptions on the size of “plausible” coefficients or on the existence of meaningful principal
components. Statistics lacks a method applicable as standard approach for measuring influ-
ences in multicollinear data sets.

2 Measuring Influences

Modification methods try to provide results which are as close as possible to partial coeffi-
cients. Alternatively, this paper suggests measurement concepts not motivated by closeness to
partial coefficients.

2.1 Supplementary Coefficient

Multicollinearity causes an interpretation problem because regressors have common influ-
ences which must be split among the various regressors. So the question arises what the addi-
tional influence of a regressor is when all common influences are removed. A first step to
measure this additional or “supplementary” influence is to adjust the regressor for the com-
mon influences by replacing it by its residuals (cf. 4.1.3). These residuals are given by a mul-
tiple regression of the actual regressor on the other regressors. When multicollinearity is high,
this regression explains a large percentage of the actual regressor’s variance. In this case, the
percentage of unexplained variance, called tolerance of the regressor, is small.

The slope of a simple regression on this adjusted regressor coincides with the partial coeffi-
cient of multiple regression (cf. 4.2.5). Very small tolerances lead to very small residuals and
therefore this slope is very large in tendency. Obviously, one unit change in the original re-
gressor does not come along with one unit change in its adjusted version. Thus the partial co-
efficient is no measure of supplementary influence.
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In order to achieve an appropriate measurement, the adjusted version is synchronized with the
original regressor in such a way that one unit change of the regressor corresponds with one
unit change in its adjusted and synchronized form. This is done by multiplying the adjusted
version by a suitably chosen number, which is the reciprocal of the regressor’s tolerance
(Fickel 1999: 105ff). This reciprocal is called variance inflation factor (VIF), which refers to
its property in the standard stochastic model of regression analysis. In a word, one can syn-
chronize a regressor by multiplying it by its VIF or, equivalently, by dividing it by its toler-
ance. Now the slope of simple regression on this adjusted and synchronized regressor meas-
ures the supplementary influence and the resulting “supplementary coefficient” has the fol-
lowing properties (cf. 4.4.7ff):

• Simple If Not Correlated: The supplementary coefficient is identical with the slope of a
simple regression if the regressors are uncorrelated with each other. That is why, the re-
gressor's tolerance is 100 %. In this case, the supplementary coefficient has the same value
as the total influence.

• Zero If Perfectly Correlated: It is zero if there is perfect multicollinearity with respect to
the actual regressor, that is, the regressor can be described completely as a linear function
of the other regressors, and therefore has a tolerance of 0 %. In this case, the regressor
contains no additional information.

• Natural Scaling Units: It is given in units of the regressand per units of the regressor. Thus
the size of the supplementary coefficient can be appraised directly.

• Product of Tolerance and Partial: It is always the product of the regressor's tolerance and
partial coefficient, unless the partial coefficient does not exist because there is perfect
multicollinearity. This factorization can be seen as the supplementary influence being part
of the partial influence. The absolute value of the partial coefficient is never greater than
the absolute value of the supplementary coefficient, and both coefficients have always the
same sign.

The supplementary coefficient indicates the additional influence of its regressor. The determi-
nation of its indication can be quantified by means of the increment of the regressand's ex-
plained variance when the regressor is additionally taken into account. This increment is the
difference of variance percentages: The first is the percentage of variance explained by all
regressors and the second is the percentage of variance explained when the actual regressor is
omitted. This difference can be easily transformed in only stochastically motivated coeffi-
cients such as t-values, partial F-values and P-values (cf. Bring 1994: 212f). So the supple-
mentary coefficient, proposed in this paper as a new tool of data analysis, complements
known measures of additional effect. To sum up, it may be said that the supplementary meas-
urement establishes a neodescriptive tool as follows (cf. 4.10.3):

� Indication: A supplementary coefficient measures the additional influence of a regressor
apart from its common influence together with the remaining regressors. The scaling unit
is the same as in simple regression.

� Determination: The expressiveness of a supplementary coefficient can be measured by the
percentage variance which is additionally explained.
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� Interpretation: A supplementary coefficient describes the average change of the regres-
sand, when the regressor is varied by one scaling unit and its common effects with the
other regressors are respected. In this case, all regressors are included.

The concept of supplementary measurement provides a new understanding of the partial coef-
ficient when multicollinearity is severe: The influences of all regressors are not represented by
their partial coefficients which show only the directions of the supplementary influences. The
absolute value of a partial coefficient is misleading and can only be seen as the formal product
of the supplementary coefficient and the VIF.

The supplementary coefficient can be understood as a part of the total coefficient and their
difference describes the common influences of the actual regressor with the remaining regres-
sors. This difference is the tolerance’s complement multiplied by the “anti-partial” coefficient
which is defined as the slope of a simple regression of the regressand on the actual regressor’s
residuals in this paper. These residuals are the version of the actual regressor when adjusted
for all other regressors and so the variance of these residuals just defines its tolerance. So a
total coefficient is a weighted arithmetic mean of a partial and anti-partial coefficient where
the weights are the tolerance and the tolerance’s complement, respectively (cf. 4.5.3). The
anti-partial coefficient describes the regressor’s influence as far as it can be represented by a
variation of the other regressors.

A partial influence is graphically demonstrated by a “partial regression plot” (also known as
“added variable plot”), where the x-axis shows the regressor and the y-axis shows the regres-
sand, and both are adjusted for the remaining regressors (cf. 4.2.6; Chambers 1983: 268ff).
Since the supplementary coefficient is also the slope of a simple regression line, it can be de-
picted graphically, too. To achieve this, the x-axis has to show the values of the adjusted and
synchronized regressor and the y-axis the original values of the regressand. Alternatively, a
diagram shows the same slope when the x-axis represents the original values of the regressor
and the y-axis the adjusted (but not synchronized) values of the regressand (cf. 4.4.9). This is
a known plot used to reveal dependencies on the additional regressor (cf. Draper and Smith
1998: 68). Yet in this case the simple coefficient of determination can differ from the deter-
mination of the supplementary coefficient as described above.

2.2 Supplementary Sequence

A supplementary coefficient only describes an additional influence of just one regressor when
all remaining regressors are already taken into account. Common influences cannot be seen
and a supplementary influence is very small if all regressors are strongly correlated. In this
case little information is gained by looking at the supplementary (and hence partial) coeffi-
cients.

Yet the analyst can get an overview over the data by choosing an ordering of the regressors.
This ordering can be natural like the sequence of questions in a questionnaire or it can be ar-
bitrary with the more interesting regressors in the first places. In any case the chosen ordering
gives a sequence of supplementary coefficients in the following way (cf. 4.6.2):
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1. The first element of the sequence is the total coefficient of the first regressor. This coeffi-
cient actually coincides with the supplementary coefficient because no other regressor is
taken into account.

2. The second element is the supplementary coefficient of the second regressor when only
the first regressor is taken into account.

3. The third element is the supplementary coefficient of the third regressor when the first and
the second regressor are taken into account.

4. ... and so on...

5. The last element is the supplementary coefficient when the first up to the last but one re-
gressor are taken into account. In this case no regressor is omitted.

This sequence helps the analysts to understand their data set with respect to its correlation
structure. High multicollinearity in tendency leads to small supplementary coefficients at the
end of the sequence. This new tool of data analysis complements sequential sums of squares
which consist of the percentage of variance explained by the first one, two, and so on, regres-
sors of a sequence (cf. Rawlings et al. 1998: 196f; Draper and Smith 1998; 151f). So a “sup-
plementary sequence” fulfils the characteristics of neodescriptive statistics:

� Indication: The supplementary sequence indicates the additional influences when step by
step a regressor is taken into account. The scaling unit of each individual coefficient may
be different according to the scaling unit of its regressor.

� Determination: The accompanying percentages of variance which is additionally ex-
plained show the expressiveness of the regressors’ influences with respect to the chosen
ordering.

� Interpretation: Each element of the sequence describes average changes of the regressand
while step by step additional regressors are included. Clearly, the inclusion of a new re-
gressor does not change the supplementary influences of the regressors included previ-
ously.

A supplementary sequence depends on the choice of an ordering. This dependence is the
stronger the more correlated the regressors are. The analyst can place the more interesting
regressors at the beginning of the ordering, and by varying the ordering, a more detailed in-
sight into effects of multicollinearity can be gained. A ‘scree plot’ graphically shows the de-
termination of a supplementary sequence by depicting the cumulative percentage of unex-
plained variance at the y-axis against the number of regressors used at the x-axis. A sharp re-
duction within a ‘scree plot’ demonstrates that the explained variance is concentrated on cer-
tain regressors with respect to the chosen ordering.

In case of a large number of regressors (say more than four) an ordering might be chosen with
the help of a formal criterion which also maximizes the explained variance. The following
strategies are possible:

• Stepwise Maximizing: The ordering is constructed step by step. The first regressor is taken
in such a way that its total coefficient of determination is maximal. The second regressor
has to maximize the increment in the coefficient of determination, and so on.
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• Fixed Number Maximizing: A certain number governs this strategy as a parameter: A sub-
set of this number of regressors is selected to maximize the coefficient of determination.
The regressors within and outside the chosen subset are ordered in the stepwise manner.

• Maximizing Concentration: The ordering is taken in such a way that the increments of
variance concentrate on the beginning of the sequence. A concentration ratio can be used
to measure the degree of concentration.

The strategies of stepwise and fixed number maximizing are closely related to subset selection
in multiple regression: The algorithm of forward selection gives the same ordering as stepwise
maximizing when applied to all given regressors, and the algorithm of “best” subset selection
just gives the subset of regressors used in fixed number maximizing (cf. Miller 1990: 43ff;
Bring 1994: 212f). The adjusted coefficient of determination suggested by Bomsdorf (1993,
1994) can be used for choosing the parameter adequately.

In order to maximize concentration, various measurement concepts of concentration are avail-
able (cf. Piesch 1975). In this paper Rosenbluth’s ratio is suggested, which does not depend
on any parameters and can easily be represented graphically; yet it has to be modified slightly
to get appropriate results. Since a maximal concentration on the beginning of the sequence
(and not just on arbitrarily located regressors) is aimed at, the modified ratio respects the po-
sition of all regressors including their increments (cf. 4.7.1). When no multicollinearity is pre-
sent, the increments do not depend on the regressors’ ordering; consequently, the modified
ratio does not differ from Rosenbluth’s original ratio. For highly concentrated orderings, this
difference is often small even if the regressors are strongly correlated.

The starting point of sequential regression was to take regressors into account step by step.
There are known procedures also using an ordering of regressors and giving a sequence of
coefficients. One of these is the so-called “method of stepwise least squares”, which adjusts in
every step the regressand for the actual regressor (cf. Malinvaud 1966: 21ff). Another proce-
dure is the “method of successive elimination”, which adjusts in every step the actual regres-
sor for all previous regressors (cf. Ezekiel and Fox 1959: 169ff). When the latter method is
used, the coefficient of the last regressor is identical with its partial coefficient in multiple
regression. In such a way a partial coefficient can be computed (yet there are more efficient
algorithms).

2.3 Particular Coefficient

The measurement of supplementary influences provides a basis for indicating the particular
influence of a regressor, which is the regressor’s part of the collective influences of all regres-
sors. Thus there is no dependence on a certain ordering. General modification methods do not
give a measure of particular influence since they only alter the partial coefficient which is
meaningless for highly multicollinear data.

The coefficient of a regressor within a supplementary sequence indicates its additional influ-
ence with respect to the actual ordering. By inspecting all possible orderings of the given re-
gressors, the analyst gets a set of supplementary coefficients for each regressor. The range of
this set shows the dependence of the additional influence on the present multicollinearity. In
this paper, the particular influence of a regressor is defined as the arithmetic mean of all its
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supplementary coefficients existing (Fickel 1999: 134ff). Other numbers but the arithmetic
mean might also describe the set of supplementary coefficients, but the arithmetic mean is
simple and so induces properties which are easy to understand. To sum up, the following
statements can be made about the “particular coefficient” of a regressor (cf. 4.8.3):

• Simple If Not Correlated: The particular coefficient is identical with the simple coefficient
if the regressors are uncorrelated. Naturally, in this case, it also coincides with the partial
and supplementary coefficient.

• Proportional If Perfectly Correlated: If all regressors are identical, it is the simple coeffi-
cient of one of these regressors divided by the number of all regressors. In the special case
of just two regressors, it is half of the simple coefficient of one of the two regressors.

• Natural Scaling Units: Like the supplementary and partial coefficient it is given in units of
the regressand per units of the regressor.

• Independent of Ordering: Unlike the supplementary coefficient (in a supplementary se-
quence) it does not depend on a certain ordering since all orderings are equally taken into
account.

A regressor’s part of the collective influences is indicated by the particular coefficient of this
regressor. The determination of this indication can be measured by dividing up the multiple
coefficient of determination correspondingly, as discussed by Kruskal (1987): The sequential
sum of squares are computed for every ordering of the regressors and then a regressor’s par-
ticular part is the average of all its percentages. As a result, the particular parts of all regres-
sors sum up to the multiple coefficient of determination (cf. 4.8.2). Kruskal suggested these
percentages to assess the relative importance of regressors. Yet these percentages only meas-
ure the determination of a particular influence and so the particular coefficients proposed in
the present paper complete the averaged percentages to a tool of neodescriptive statistics:

� Indication: A particular coefficient indicates the part of a regressor within the collective
influence of all given regressors.

� Determination: A particular coefficient is the more expressive, the larger its regressor’s
percentage of the regressand’s variance is.

� Interpretation: The particular coefficient of a regressor describes the average change of
the regressand when the regressor is varied by one unit on condition that all remaining re-
gressors are held constant on average.

Particular influences can be measured for every degree of multicollinearity and so give an
insight into the data’s structure even if standard regression analysis using partial coefficients
fails.

2.4 Components of Total Coefficient

It sounds natural to say that the total influence of a regressor consists of an additional and a
common part with respect to the other regressors. Can this statement be made precise by using
the concepts mentioned above? How can the common part be analysed in detail? This paper
introduces “components” as a possible approach (Fickel 1999: 142ff).
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As a starting point, some ordering of the regressors is chosen again. Yet the actual regressor
has to be the last in the ordering. A sequence of parts of the total coefficient of the actual re-
gressor is constructed as follows: By taking the ordering’s first regressor into consideration,
the supplementary coefficient of the actual regressor can be computed. The difference of total
and supplementary coefficient indicates the common influence of the two regressors at hand.
By taking the ordering’s first and second regressor into account, the change in the actual re-
gressor’s supplementary coefficient shows the effect of the second regressor. This procedure
can be repeated until all regressors of the ordering are considered. Since the last regressor is
the actual regressor itself, the last coefficient is its supplementary coefficient with respect to
all other regressors. If every stepwise difference is used, the total coefficient of the actual re-
gressor can be expressed as sum of these differences and its supplementary coefficient (cf.
4.9.2).

Yet all differences depend on the chosen ordering. By averaging over all orderings which end
with the actual regressor, components of each regressor are constructed. So the total coeffi-
cient is the sum of its supplementary coefficient and all other regressor’s components. These
components have the following properties (cf. 4.9.2ff):

• Zero If Not Correlated: A component is zero if its regressor is not correlated with the ac-
tual regressor. If there is no multicollinearity, all components are zero.

• Proportional If Perfectly Correlated: If all regressors are perfectly correlated, then every
component is identical to the total coefficient divided by the number of regressors (with-
out the actual regressor).

• Identical Scaling Units: Every component has the same scaling unit as the total coefficient
of the actual regressor.

• Independent of Ordering: The components are independent of a certain ordering.

This partition of the total coefficient can be made for every regressor. A tabular representation
with a column for each partition and a row for each regressor gives a comprehensive analysis
of effects of multicollinearity: The column sums are total coefficients and the diagonal con-
tains the supplementary coefficients. The components are shown in the cells outside the di-
agonal. This representation is similar to commonality analysis (cf. Newton and Spurrell 1967:
53ff; Pedhazur 1982: 199ff), yet it contains different measures of influence.

Analogously, a regressor’s total coefficient of determination can be divided among all given
regressors in such a way that the parts are non-negative numbers. To achieve this, adjusted
versions of the regressors are used. The part of the actual regressor itself is the product of its
total coefficient of determination and its tolerance. In the special case of perfect correlation
the tolerance is zero and so this part vanishes (cf. 4.9.5).

The partition of a regressor’s total influence into components for the remaining regressors can
be seen as neodescriptive:

� Indication: A regressor’s component indicates its influence entangled with the total influ-
ence of the actual regressor. The actual regressor itself is represented by its supplementary
coefficient.
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� Determination: A component is the more expressive, the larger its percentage of the total
coefficient of determination is. The expressiveness of the supplementary coefficient di-
rectly depends on the tolerance of the actual regressor.

� Interpretation: A regressor’s part describes the average change in the regressand when the
actual regressor is varied by one unit via the regressor.

By partitioning a total influence into components a better understanding of the results of a
simple regression analysis can be achieved when correlated variables are present.

3 Real-World Example

The new neodescriptive tools are exemplified with a data set on the Gross Domestic Product
(GDP) of the 15 members of the European Union in 1997. GDP is measured in millions of
European Currency Units (ECU) at market prices. The regressors of the analysis are the eco-
nomically active population (EAP) in one thousand persons, the (total) population in one
thousand persons and the area of the member country in square kilometre (data source: Fed-
eral Statistical Office of Germany 1999: 36ff). Obviously, these three regressors are highly
correlated since the size of a member country dominates their values. The tolerances are about
1 % for EAP as well as for the population and 55 % for the area.

Table 1: Influences on Gross Domestic Product

Type of Influence
Variable

Total Partial Supplementary Particular
Indication

Million ECU Per Unit of Variable
EAP 45.4 54.5 0.6 20.4
Population 20.5 -3.9 -0.04 9.0
Area 1.71 -0.07 -0.04 0.53

Determination
% of Variance of GDP

EAP 97 × 1 44
Population 96 × < 0.1 43
Area 32 × < 0.1 11

Sum ×××× ×××× ×××× 98

Table 1 shows different types of influence: All total coefficients are positive and so in simple
regression their variables are all positively correlated with GDP. Their coefficient of determi-
nation is high for EAP (97 %) and for the population (96 %), and relatively low for the area
(32 %). Using all three regressors together yields a multiple coefficient of determination of
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98 %. Although technically easily computed the partial coefficients are hard to interpret. In
this case, the partial coefficient of EAP with 45.5 Million ECU per 1,000 persons seems rather
high when compared with the corresponding total coefficient. Analogously, the negative value
of the population cannot be seen as its adequate part of the collective influence on GDP. The
supplementary influences make the effect of multicollinearity clear: Every regressor has a very
small additional influence according to its coefficient, and the corresponding variance per-
centages are not more than 1 %. A partition of the collective influence is given by the par-
ticular coefficient: EAP has the value 20.4 Million ECU per 1,000 persons, which is about
twice the coefficient of the population. Their variance percentage differs only slightly with
44 % versus 43 %, and so both regressors are equally expressive. The area has only a percent-
age of 11 % which is just about one forth of each of the other values and about one eighth of
the other values summed up.

Table 2: Components of Total Influence on Gross Domestic Product

Column Variable
Row Variable

EAP Population Area
Total

Indication
Million ECU Per Unit of Row Variable

EAP 0.6 37.1 7.8 45.4
Population 16.9 -0.04 3.7 20.5
Area 0.84 0.91 -0.04 1.71

Determination
% of Variance of GDP

EAP 1 79 17 97
Population 76 1 19 96
Area 7 8 18 32

A closer look on the structure of the total influences is provided by table 2: The total coeffi-
cient 45.5 of EAP can be split up into its supplementary part 0.6 (see table 1) and a common
part of 44.9 (= 37.1 + 7.8), which is attributable to the population with a variance percentage
of 79 % and to the area with 17 %. Hence the area’s contribution is relatively small within the
total influence of EAP on GDP. The structure of the total influence of the area is different,
because its supplementary coefficient is small and negative. The positive value of the total
coefficient can be attributed to EAP and the population in roughly equal parts (0.84 and 0.91).
Yet the variance percentage (32 %) belongs to more than one half to the area itself. Only 7 %
respectively 8 % can be attributed to the other regressors. So the area is separated from EAP
and population, which is understandable since both latter variables directly refer to the popu-
lation structure of a member country.
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To conclude, it may be said that the new statistics give a plausible breakdown of the collective
influences of EAP, the population and the area on GDP, and so provide a deeper insight into
the data. However, one can assess the quality of a coefficient in detail by using scatter plots of
GDP against the (adjusted and synchronized) variable and so outliers can be detected. Since
no stochastic model is tested, no checking of the according assumptions is necessary to inter-
pret the results descriptively.

4 Mathematics

4.1 Influence and Adjustment

Let n be a natural number.

4.1.1 Notation. A mapping RIRIRIE nn →×:  is defined by

∑

∑

=

=

−

−−
= n

i
i

n

i
ii

xx

yyxx
yxE

1

2

1

)(

))((
:),(    for all nRIyx ∈,

(if the nominator is zero, then 0:),( =yxE ).

4.1.2 Remark. If 0== yx  and 0>′xx  then )/()(),( xxyxyxE ′′= .

4.1.3 Notation. A mapping nnn RIRIRIB →× )(: P  is defined by

xXXXXxMxB ′′−= −1)(:),(    for all nn RIMRIx ⊆∈ ,

where the columns of X are a basis of the vector space )}1span({ Mn ∪ .

4.1.4 Remark. Let be nRIx ∈ and nRIM ⊆ . Then

a) ),( ∅xB  = xx − ,

b) )(),()(}){,( xxyxEyyxyB −⋅−−= ,

c) x and M are not correlated if xxMxB −=),( ,

d) x and M are perfectly correlated if 0),( =MxB .

4.1.5 Notation. For nn RIMRIyx ⊆∈ ,,  let be ),(: MxBe =  and ),(: MyBf = .

4.1.6 Lemma. For all nn RIMRIx ⊆∈ ,  it holds

a) 0=e    if Mx ∈ ,

b) eMeB =),( .

Proof (cf. Greene 1993: 178). With H := XXXXEn ′′− −1)(  one has e = Hy . Straightforward
matrix calculations show HH =2  and HH =′ . For a): For Mx ∈  there is a qRIa +∈ 1  such
that Xax =  and so ),( MxB  = HXa  = aXXXXXX ))()(( 1 ′′− −  = aXX )( −  = 0. For b):

),( MeB  = He  = )(HxH  = xH 2  = Hx  = e.

4.1.7 Lemma. Let nRIyx ∈,  and nRIM ⊆ . Then
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a) ),(),( feEyeE = ,

b) 1),( =xeE    if 0≠e ,

c) ),(),(),( fxEyeEexE =⋅ .

Proof. Without restricting the proof, 0== yx is assumed. For a): By using H as in the proof
of lemma 4.1.6 one gets ye′  = yHx)( ′  = Hyx′  = yHx 2′  = HyHx ′′  = )()( HyHx ′  = ef  and so
property a). For b): The special case yx =  gives ),( xeE  = ),( eeE  = 1. For c): Now one has

),(),( yeEexE ⋅  = 
ee
ye

xx
ex

′
′

′
′

 = 
ee
ye

xx
xe

′
′

′
′

 = 
ee
fe

xx
ee

′
′

′
′

 = 
xx
fe
′
′

 = ),( fxE .

4.1.8 Theorem. For nRIyx ∈,  and nRIM ⊆  one has

}){,(}){,( efBxMyB =∪ .

Proof. Let a matrix X be such that its columns are a basis of the vector space )}1span({ Mn ∪
and define W := ),( eX . Somewhat tedious matrix calculations using the linear independence
of X’s columns and e show

WWWW ′′ −1)(  = eeXXXX ′+′′ −1)(

and so by using a)

}){,( xMyB ∪  = yWWWWy ′′− −1)(  = yeeyXXXXy ′−′′− −1)(  = yeef ′−

= eyef ⋅′− )(  = efef ⋅′− )( = }){,( efB .

4.2 Partial Coefficient

Let be qk ,,1�= .

4.2.1 Definition. A regression task (with q regressors) in nRI  is a tupel ),,,( 1 yxx q�  such that
n

q RIyxx ∈,,,1 � . It is called regular, if the columns of X := ),,,1( 1 qn xx �  are linearly inde-

pendent and 0)(
1

2 >−∑
=

n

i
i yy .

4.2.2 Notation. Let ),,,( 1 yxx q�  be a regular regression task. Then

yXXXpppp q ′′=′= −1
10 )(:),,,(: � .

4.2.3 Remark. The number kp  is the partial coefficient of kx .

4.2.4 Notation. },,{: 1 qxxM �= , }{\: kk xMM = , ),(: kkk MxBe =  and ),(: kk MyBf = .

4.2.5 Lemma (cf. Ezekiel and Fox 1959: 170ff; Ryan 1997: 168ff). Let ),,,( 1 yxx q�  be a
regular regression task. Then ),( yeEp kk = .

Proof. One has

y = fxp
q

l
ll +∑

=0

 = fxpy
q

l
ll ++ ∑

=1

and so by using lemma 4.1.7
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),( yeE k  = ),(),(
1

feExpeE k

q

l
llk +∑

=

 = ),(),(
1

feExeEp k

q

l
lkl +∑

=

= 0),( +kkk xeEp  = 1⋅kp  = kp .

4.2.6 Corollary (Frisch and Waugh 1933: 391ff; cf. Greene 1993: 180). ),( kkk feEp = .

Proof. This follows from lemma 4.2.5 together with lemma 4.1.7.

4.2.7 Remark. Lemma 4.2.5 completes the definition of kp  for non-regular regression tasks.

4.3 Coefficient of Determination

Let ),,,( 1 yxx q�  be a regular regression task in nRI .

4.3.1 Notation. yXXXXy ′′= −1)(:ˆ .

4.3.2 Notation.
∑

∑

=

=

−

−
= n

i
i

n

i
i

yy

yy
R

1

2

1

2

)(

)ˆ(
: .

4.3.3 Remark. R  is the multiple coefficient of determination (also known as R square coeffi-
cient) of the regression task.

4.3.4 Lemma. R  = ),(1 fyE− .

Proof. Without restricting the proof 0=y  can be assumed. Then

R = )()ˆˆ( yyyy ′′  = )/()()( yyfyfy ′−′−  = )/()2( yyfffyyy ′′+′−′

= )/()(),(21 yyfffyE ′′+− .

By using lemma 4.1.7 one gets ),( fyE  = )()( yyfy ′′  = )()()()( fffyyyff ′′⋅′′  =
),()()( yfEyyff ⋅′′  = 1)()( ⋅′′ yyff = )/()( yyff ′′ , which completes the proof.

4.3.5 Notation. A mapping ]1,0[)(: →× nn RIRIR P  is defined by

),(1:),( exExMR −=    for all nn RIMRIx ⊆∈ , .

4.3.6 Remark. ),( yxR  := )},({ yxR  = ),(),( xyEyxE ⋅  for all RIyx ∈, .

4.4 Supplementary Coefficient

Let ),,,( 1 yxx q�  be a regression task and k = 1, ..., q.

4.4.1 Notation. A mapping nnn
s RIRIRIB →× )(: P  is defined by

eexEMxBs ⋅= −1),(:),(    for all nn RIMRIx ⊆∈ ,

(if 0),( =exE  then 0:),( =MxBs ).

4.4.2 Lemma. For all nn RIMRIx ⊆∈ ,  it holds 1)),(,( =MxBxE s  if 0),( ≠MxBs .

Proof. )),(,( MxBxE s  = )),(,( 1 eexExE ⋅−  = ),(),( 1 exEexE −  = 1.
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4.4.3 Definition. The supplementary coefficient of kx  is

)),,((: yMxBEs kksk = .

4.4.4 Notation. ),(: kkk exET = .

4.4.5 Lemma. kT  is the tolerance of kx , that is ),(1 kkk xMRT −= .

Proof. Lemma 4.3.4 gives ),( kk xMR  = ),(1 kk exE−  and so kT  = ),( kk exE  = ),(1 kk xMR− .

4.4.6 Remark. 1=kT  if kx  and kM  are not correlated, and 0=kT  if kx  and kM  are perfectly
correlated.

4.4.7 Theorem (Fickel 1999: 221). kkk pTs ⋅= .

Proof. ks  = ),),(( 1 yeexEE kkk ⋅−  = ),(),( yeEexE kkk ⋅  = kk pT ⋅ .

4.4.8 Corollary. ),( yxEs kk =  if kx  and  kM  are not correlated, and 0=ks  if kx  and kM  are
perfectly correlated.

Proof. This follows from remark 4.4.6.

4.4.9 Theorem. ),( kkk fxEs = .

Proof. From theorem 4.4.7 together with lemma 4.1.7 follows

ks  = ),(),( yeEexE kkk ⋅  = ),(),( kkkk feEexE ⋅  = ),( kk fxE .

4.4.10 Definition. The supplementary increment of kx  is ),(),(: yMRyMRR kk −=Δ .

4.4.11 Lemma. ),( yeRR kk =Δ .

Proof. By using lemma 4.1.7 two times one gets

),( yMR = ),(1 fyE−  = )),(,(1 MyByE−  = })){,(,(1 kk xMyByE ∪−

= ))),,((,(1 kk eMyBByE−  = )),(,(1 kk efByE−  = )),(,(1 kkkk efeEfyE ⋅−−

= ),(),(),(1 kkkk eyEfeEfyE ⋅+−  = ),(),()),(1( kkk eyEyeEfyE ⋅+−

= ),(),( yeRyMR kk +

and so the proposition follows by definition 4.4.10.

4.5 Anti-Partial Coefficient

Let ),,,( 1 yxx q�  be a regression task and k = 1, ..., q.

4.5.1 Notation. kkk exx −=:ˆ .

4.5.2 Definition. The anti-partial coefficient of kx  is ),ˆ(:ˆ yxEp kk = .

4.5.3 Theorem. kkkkk pTpTyxE +−= ˆ)1(),( .

Proof. Without restricting the proof let be 0== yxk . Then
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),( yxE k = ),ˆ( yexE kk +  = 
kk

kkk

xx
yexx

′
′+′ ˆˆ

 = ),(),ˆ(
ˆˆ

yeE
xx
yeyxE

xx
xx

k
kk

k
k

kk

kk

′
′

+
′
′

= ),()),(1(),ˆ(),( yeEMxRyxEMxR kkkkkk −+  = kkkk pTpT +− ˆ)1( .

4.5.4 Remark.

a) kkkk spTyxE +−= ˆ)1(),( ,

b) ),(),()1(),( yxRTyxRTyxR kkkkk +−= ,

c) 0),()1( ≥− yxRT kk ,   0),( ≥yxRT kk .

4.6 Supplementary Sequence

Let n and q be natural numbers.

4.6.1 Notation. Let qS  be the set of permutations of },,1{ q� , that is all bijective mappings
from },,1{ q�  onto },,1{ q� .

4.6.2 Notation. Let ),,,( 1 yxx q�  be a regression task in nRI . Then for qS∈σ

a) )),,,;((: )1()1()()( yxxxBEs kksk −= σσσ
σ
σ �    for all k = 1, ..., q,

b) )),,,;((: )1()1()()( yxxxBRR kkk −=Δ σσσ
σ
σ �    for all k = 1, ..., q

(where ∅=− :},,{ )1()1( kxx σσ �  if k = 1).

4.6.3 Lemma. Let ),,,( 1 yxx q�  be a regression task and qS∈σ . Then

RR
q

k
k =Δ∑

=1
)(

σ
σ .

Proof. This follows by using lemma 4.4.11 iteratively and )),;(( )1( yxBR ∅σ  = ),( )1( yxR σ .

4.6.4 Notation.
⎩
⎨
⎧

=
≠

=
ba
ba

ba if,0
if,1

:1 ,  for all RIba ∈, .

4.6.5 Lemma. For every k = 1, ..., q it holds

a) ),( yxEs kk =σ  and ),( yxRR kk =Δ σ , if kx  and kM  are not correlated,

b) 1),(1),( kkk yxEs σ
σ ⋅=  and 1),(1),( kkk yxRR σ

σ ⋅=Δ , if kx  and kM  are perfectly correlated.

Proof. This follows from lemma 4.4.8.

4.7 Concentration Ratio of Rosenbluth

Let ),,,( 1 yxx q�  be a regression task in nRI  and qS∈σ .

4.7.1 Notation. σ
RK  := 

∑
=

−Δ
q

k
kRk

R 1

1)2(

1
σ

 (if 0=R  then σ
RK  := 1).
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4.7.2 Lemma. 1
12

1 ≤≤
−

σ
RK

q
.

Proof. Using lemma 4.6.3 gives

∑∑∑
===

=Δ≤Δ≤Δ=
q

k
k

q

k
k

q

k
k qRRqRkRR

111

σσσ ,

and so, if R > 0, by transforming 1/2 −Rxx �

12121
1

−≤−Δ≤ ∑
=

qRk
R

q

k
k
σ .

Hence the proof is completed by taking reciprocals.

4.8 Particular Coefficient

Let ),,,( 1 yxx q�  be a regression task and k = 1, ..., q.

4.8.1 Notation. Define

a) ∑
∈

=
qS

kk s
q

s
σ

σ

!
1: ,

b) ∑
∈

Δ=Δ
qS

kk R
q

R
σ

σ

!
1: .

4.8.2 Lemma. RR
q

k
k =Δ∑

=1

.

Proof. This follows from lemma 4.6.3 when averaged for every ordering qS∈σ .

4.8.3 Lemma.

a) ),( yxEs kk =  and ),( yxRR kk =Δ , if kx  and kM  are not correlated.

b) qyxEs kk /),(=  and qyxRR kk /),(=Δ , if kx  and kM  are perfectly correlated.

Proof. By using lemma 4.6.5 one gets:

For a): ks  = ∑
∈ qS

k yxE
q σ

),(
!

1  = ),(!
!

1 yxEq
q k  = ),( yxE k .

For b): ks  = ∑
∈

⋅
qS

kk yxE
q σ

σ 1),(1),(
!

1  = ),()!1(
!

1 yxEq
q k−  = qyxE k /),( .

The properties of kRΔ  can be followed analogously.

4.9 Components of Total Coefficient

Let ),,,( 1 yxx q�  be a regression task and k = 1, ..., q.

4.9.1 Notation. Let qS∈σ  with kq =)(σ . Then
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)),,,;((: )()1(, yxxxBEa lkslk σσ
σ �=    for all l = 1, ..., q

and )),,((:0, yxBEa ksk ∅=σ . Further

σσσ
lklklk aaa ,1,, : −=Δ −    for all l = 1, ..., q.

4.9.2 Lemma. Let qS∈σ  with kq =)(σ . Then ∑
=

Δ=
q

l
lkk ayxE

1
,),( σ  and kqk sa =Δ σ

, .

Proof. One has σ
0,ka  = ),(),( yxEyxE kk = , kqk sa =−

σ
1, , 0),0(, == yEa qk

σ  and so

∑
=

Δ=−=−=
q

l
lkqkkkk aaayxEyxE

1
,,0,0),(),( σσσ

and kkqkqkqk ssaaa =−=−=Δ − 0,1,,
σσσ .

4.9.3 Notation. Let qS∈σ  with kq =)(σ . Then

),()~,(:, yxRxxRR klklk ⋅=Δ σσ    for all l = 1, ..., q

where ),,;(:~
)1()1()( −= llsl xxxBx σσσ

σ � .

4.9.4 Lemma. For all l = 1, ..., 1−q  and qS∈σ  with kq =)(σ  it holds

a) σ
lka ,Δ  = 0 and σ

lkR ,Δ  = 0, if kx  and kM  are not correlated,

b) σ
lka ,Δ  = lk yxE ,11),( ⋅  and σ

lkR ,Δ  = lk yxR ,11),( ⋅ , if kx  and kM  are perfectly correlated.

Proof. For a): Then σ
lka ,Δ  = ),(),( yxEyxE kk −  = 0 and σ

lkR ,Δ  = ),(0 yxE k⋅  = 0.

For b): Then for 1=l
σ

lka ,Δ = )),,(()),,(( )1( yxxBEyxBE ksks σ−∅  = 0),( −yxE k  = ),( yxE k ,

σ
lkR ,Δ = ),(),( )1( yxRxxR kk σ  = ),(),( yxRxxR kkk  = ),( yxR k ,

and for 1>l
σ

lka ,Δ = ),0(),0( yEyE −  = 0,

σ
lkR ,Δ = ),()0,( yxRxR kk  = ),(0 yxR k⋅  = 0.

4.9.5 Lemma. Let qS∈σ  with kq =)(σ . Then

a) 0, ≥Δ σ
lkR    for all l = 1, ..., q,

b) ∑
=

Δ=
q

l
lkk RyxR

1
,),( σ ,

c) ),(, yxRTR kkqk ⋅=Δ σ .

Proof. For a): This holds since σ
lkR ,Δ  is a product of two non-negative factors.

For b): Applying lemma 4.6.3 and using lemma 4.3.4 gives
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∑
−

=

1

1

),~(
q

l
kl xxR σ  = );,,( )1()1( kq xxxR −σσ �  = )~,(1 σ

qk xxE−

and hence by using lemma 4.1.7

∑
=

q

l
kl xxR

1

),~( σ  = )~,()~,(1 σσ
qkqk xxRxxE +−  = 1)~,()~,(1 ⋅+− σσ

qkqk xxExxE  = 1.

Multiplying both sides by ),( yxR k  proofs b).

For c): Since σ
qx~  = ),( kks MxB  it follows with notation 4.4.4 and lemma 4.1.7 that kT  =

),( kk exE  = ),( kk exR  = )~,( σ
qk xxR  and hence c).

4.9.6 Notation. By using kqS ,  := })(|{ kqSq =∈ σσ  one defines

a) ∑
∈

Δ
−

=Δ
kqS

rklk a
q

a
,

,, )!1(
1:

σ

σ    for all l = 1, ..., q,

b) ∑
∈

Δ
−

=Δ
kqS

rklk R
q

R
,

,, )!1(
1:

σ

σ    for all l = 1, ..., q

(where r := )(1 l−σ  varies in the sums).

4.9.7 Lemma. For all l = 1, ..., q it holds

a) lka ,Δ  = lkk yxE ,1),( ⋅  and lkR ,Δ  = lkk yxR ,1),( ⋅ , if kx  and kM  are not correlated,

b) lka ,Δ  = lkk qyxE ,1)1/(),( ⋅−  and lkR ,Δ  = lkk qyxR ,1)1/(),( ⋅− , if kx  and kM  are perfectly

correlated.

Proof. This directly follows with the help of lemma 4.9.4.

4.9.8 Theorem (Fickel 1999: 242ff).

a) k

q

l
lkk sayxE +Δ= ∑

−

=

1

1
,),( ,

b) 0, ≥Δ lkR    for all l = 1, ..., q,

c) ),(),(
1

, yxRTRyxR kk

q

l
lkk ⋅+Δ= ∑

=

.

Proof. These are direct consequences of lemma 4.9.2 and lemma 4.9.5.

4.10 Neodescriptive Statistics

4.10.1 Definition. A neodescriptive statistic on a set M is a pair ),( DI  such that RIMI →:
and ]1,0[: →MD  are mappings.

4.10.2 Remark. The pair ),( RE  is the neodescriptive statistic on nn RIRI ×  measuring total
influence (cf. section 1.1).

4.10.3 Remark. Let n and q be natural numbers. For every k = 1, ..., q each of the following
pairs is a neodescriptive statistic on the set of all regression tasks with q regressors in nRI :
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a) ),( kk Rs Δ  measures the supplementary influence of regressor kx  (cf. section 2.1),

b) )),(,( yxRTs kkk  measures the supplementary part of the total influence of regressor kx
(cf. section 2.1),

c) ),( σσ
kk Rs Δ  measures the supplementary influence of regressor kx  within the sequence

qS∈σ  (cf. section 2.2),

d) ),( kk Rs Δ  measures the particular influence of regressor kx  (cf. section 2.3),

e) ),( ,, lklk Ra ΔΔ  measures the component of regressor lx  in the total influence of regres-
sor kx  for every l = 1, ..., q (cf. section 2.4).
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