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Abstract

In this paper, we propose methods of the determination of the rank of
matrix. We consider a rank test for an unobserved matrix for which an
estimate exists having normal asymptotic distribution of order N1/2where
N is the sample size. The test statistic is based on the smallest estimated
singular values. Using Matrix Perturbation Theory, the smallest singular
values of random matrix converge asymptotically to zero in the order O(N 1)
and the corresponding left and right singular vectors converge asymptotically
in the order O(N 1/2). Moreover, the asymptotic distribution of the test
statistic is seen to be chi-squared. The test has advantages over standard tests
in being easier to compute. Two approaches to be considered are sequential
testing strategy and information theoretic criterion. We establish a strongly
consistent of the determination of the rank of matrix using both approaches.
Some economic applications are discussed and simulation evidence is given

We are grateful for the comments of D. Belsley, M-C. Pichery. The first draft of this
paper was presented at the sixth International Conference of the Society on Computational
Economics, Barcelona, Spain, July, 2000.
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for this test. Its performance is compared to that of the LDU rank tests of
Gill and Lewbel (1992) and Cragg and Donald (1996).

Key words: Rank Testing; Matrix Perturbation Theory; Rank Estima-
tion; Estimated Matrices; Singular Value Decomposition.

JEL classification: C12, C13, C30.

1 Introduction

Many econometric models are specified through the rank of a certain matrix
for which a consistent estimate exists. For instance, the classical identifi-
cation problem in linear simultaneous-equations models involves the rank
of a particular submatrix of the reduced-form parameters and in a likeli-
hood setting, the rank of the information matrix relates to the identifia-
bility of a vector of parameters [Hsiao (1986)]. Lewbel (1991) and Lew-
bel and Perraudin (1995) have shown that several results in consumer the-
ory can depend on the rank of certain estimable matrices. In principal-
component and factor models, the number of factors or components in the
model equals the rank of covariance matrix, [Lawley and Maxwell (1971)].
Also, in ARMA models, the maximum order of the AR and MA processes
equals the rank of a Hankel matrix of autocovariances and, following the
Kronecker theory, the rank of the Hankel matrix equals the number of un-
observed state variables in the state-space representation of the time-series
generating process, [see Kailath (1980); Ratsimalahelo and Lardies (1998)].

Determining the rank of a matrix is a di cult task made more so if
the matrix is contaminated with errors, which is always the case in econo-
metrics and statistical applications based on estimated matrices. The most
commonly used methods for evaluating the rank of a matrix rely upon the
eigenvalue decomposition on the QR factorization [Stewart G.W. (1984)].
These tools, however, only help in making decisions and do not constitute a
test. The important paper by Gill and Lewbel (1992) introduces a rank test
based on the Gaussian elimination Lower-Diagonal-Upper triangular (LDU)
decomposition. Unfortunately, the asymptotic distribution given for this
test statistic is incorrect except for a limited special case. Cragg and Donald
(1996) provides an appropriate modification. Their test has the advantage
of possessing a limiting chi-squared distribution. Also, Cragg and Donald
(1997) propose another test for the rank of matrix based on a minimum
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chi-squared criterion.
However it is well known that the rank of the matrix is equal to its num-

ber of the non zero eigenvalues. Thus a formal test of rank can be expressed
as a test of the number of zero eigenvalues of the matrix. For this we will
construct a test of rank based on the smallest eigenvalue of the estimated
matrix. Moreover the test is more complicated when the smallest eigenvalue
has multiplicity. The asymptotic null distribution of Bartlett’s statistic is
not chi-squared, see Schott (1988). He used an approximation based on
some of its moments to obtain an asymptotically chi-squared [see also Law-
ley (1956)]. More recently Robin and Smith (2000) proposed a test statistics
which is distributed asymptotically as a linear combination of independent
chi-squared random variables rather than a chi-square. Unfortunately, the
test requires the percentiles of a weighted chi-squared distribution for which
computationally intensive algorithms need be used. Moreover the weights
are unknown and must be estimated from the sample. Thus weight estima-
tion introduces variability and hence potentially less accuracy, to the testing
procedure. In addition, there is substantial literature to assist in computing
the tail probabilities of linear combination of chi-squared random variables
see Field (1993) for an introduction.

In this paper we shall consider the singular value decomposition of a ma-
trix which allows us to use the orthogonal reduction of the matrix. The
smallest singular value of a matrix can be seen as its distance to singularity.
We shall use the matrix perturbation theory to construct or find a suitable
bases of the kernel (null space) of the matrix and to determine the limiting
distribution of the estimator of the smallest singular values. We shall give
also a rank test for an unobserved matrix for which a root-N-consistent es-
timator is available and construct a test statistics based on estimate of the
smallest singular value. The test, based on matrix perturbation theory, al-
lows us to determine how many singular values of the estimated matrix are
insignificantly di erent from zero and we shall show that the test statistic is
asymptotically distributed as chi-square under the null.

It is well known that a sequential testing procedure does not lead to a
consistent estimate of the true rank matrix unless some adjustment is made
to the significance level, Robin and Smith (2000), Cragg and Donald (1997)
used the results of Potscher (1983) to establish the weakly consistent of the
sequential testing strategy. A more general result is presented in this paper,
we propose an appropriate significance level to obtain a strongly consistent

3



determination of the rank of matrix using the sequential testing procedure.
We shal present also an alternative approach to the information theoretic
criterion.

The remainder of the paper is structured as follows: Section 2 presents
the relevant material from hypothesis testing. When several singular values
are zeros it is necessary to construct a basis of the null space. Section 3
presents matrix-perturbation results needed for statistical inference of the
smallest singular values. Based on these analysis results, a new rank test
is developed and its strong consistency is proved in section 4. Section 5
presents an alternative method to determine the rank of matrix using the
information theoretic criterion. Section 6 discusses some potential economic
applications. To demonstrate the usefulness of the proposed test, in section 7,
we present a Monte Carlo study comparing the finite sample behaviour of the
proposed test with the LDU procedure and comment on the results. Section
8 o ers concluding remarks. Proofs of the fundamental lemmas, theorems,
and propositions that provide the foundation of the technique are assembled
in the Appendix.

The following notation is used throughout the paper: vec(A) stands for
the vectorization of the m× n matrix A by stacking the columns of A. For
a singular matrix C, C+ denotes its Moore-Penrose genralized inverse. Con-
vergence in probability is denoted ” p ” and convergence in distribution
by ” d ”

2 Hypothesis testing

Consider an unobserved matrix A (m × n) with unknown true rank k > 0.
Without loss of generality, we assume m n. Let A be a root-N consistent
estimator of A, then

N1/2vec(A A) d N (0, ). (1)

where the mn×mn covariance matrix is non zero but possibly singular.

We wish to construct a test for the rank k of A, r(A). Thus, we wish to
test the null hypothesis

H0 : r(A) = k (2)
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against the alternative

H1 : r(A) > k.

which are also the hypotheses considered by Gill and Lewbel (1992),
Gragg and Donald (1996), Gragg and Donald (1997) and Robin and Smith
(2000).

The true rank of A is unknown but, with probability one, the rank of A,
a consistent estimator of A has full rank. Thus, the null hypothesis based
on a test using A is satisfied only asymptotically in N . Therefore, interest
attaches to a statistical test enabling us to determine the rank of A, given
the estimator A , from

H0 : r[A] = k . (3)

Let us write the perturbed matrix

A = A + B (4)

where the matrix B is the perturbation of the matrix A. Then, using (1)
and following the central limit theorem, the perturbation matrix can be seen
to be Gaussian with elements having zero mean and variance of order N 1.
This result implies that the dominant term in the matrix B is of order
N 1/2, denoted

B = Op(N 1/2). (5)

where Op(N a) (for 0) thus denotes a term whose elements have a
standard deviation of the order of N a.

3 Matrix Perturbation Results

Matrix perturbation analysis is concerned with the sensitivity of the eigenele-
ments of a matrix to perturbations in its components. In this section, we will
introduce the matrix perturbation results used to define a detection scheme
that allows estimation of the number of zero singular values of A.

Thre is a well-developed mathematical theory on such matrix perturba-
tions as presented by Kato (1982), Golub and Van Loan (1996), Stewart and
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Sun (1990). But this theory cannot easily be rewritten in a form suitable for
statistical inference. One is then interested in identifying the leading first-
order terms determining asymptotic distributions, as well as in establishing
easily interpretable bounds on second-order terms.

3.1 Introduction and general results

Let A be an m×n real matrix with m n and rank k, where 0 < k n. One
well-conditioned means for evaluating the rank is to use the singular value
decomposition (SVD) and count the number of nonzero singular values. If
only an estimator A of A is available, and the estimation error is small, one
would still hope to be able to recognize the ‘zero’ singular values. Indeed,
the smaller the estimation error, the easier such a decision would be. Matrix
perturbation analysis formalizes and confirms this intuition. Before, giving
the results which are use below, we will specify the notation further.

Let the SVD of the m× n real matrix A be denoted.

A = UDV = U1D1V1 (6)

where U = [u1u2...um] = [U1, U2] of order (m×m)and V = [v1v2...vn] =
[V1, V2] of order (n × n) are orthogonal matrices and D = diag(D1,D2) is
an m×n rectangular diagonal matrix with decreasing non-negative diagonal
elements i called the singular values.

In fact D2 = O of order (m k) × (n k) zero matrix and D1 =
diag( 1, 2, ..., k) is order k with 1 2 ... k > 0 the non-zero
singular values of A. The number of positive singular values is the rank of A
that is k. The columns of U and V are the left and right singular vectors of
the matrix A respectively.

The SVD gives orthonormal bases for the null space and range of A. Let
us define N (A) = span {vk+1, ..., vn} be the null space (or Kernel) of A : V2

N (A) andR(A) = span{u1, ..., uk} is the range (or column) space of A : U1

R(A). The orthogonal complement of R(A) is N (A ) = span{uk+1, ..., um} :
U2 N (A ) hence U1 is the orthogonal complement of U2. Likewise the
orthogonal complement of N (A) is R(A ) = span{v1, ..., vk} : V1 R(A )
hence V1 is the orthogonal complement of V2.

Thus U1 order (m × k) (respectively, V1 order (n × k)) an orthonormal
basis of R(A) (respectively R(A )) and U2 order (m×m k) (respectively,
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V2 order (n× n k)) an arbitrary orthonormal basis of N (A ) (respectively
N (A)).

Because the orthogonality of U and V , the matrix D may be written as

D =
U1

U2

A V1 V2 =
U1AV1 U1AV2

U2AV1 U2AV2
(7)

Thus

D1 = U1AV1 = diag( 1, 2, ..., k)

D2 = U2AV2 = Om k,n k

and the o diagonal terms U1AV2 = Ok,n k and U2AV1 = Om k,k are
satisfied because AV2 = 0 (V2 span the null space of A: V2 N (A)) and
U2A = (A U2) = 0 (U 2 span the null space of A : U2 N (A )).

Let A be an estimator of the matrix A, then the SVD of A is

A = UDV (8)

and

D = U AV . (9)

We now partition the matrices conformably to the partitioning of U , V
and D.

U = [ U1 U2 ]; V = V1 V2 ; and D = diag(D1, D2) where U1 has k

columns and U2 has m k columns. Then the SVD of the matrix A can be
written as

A = [ U1 U2 ]
D1 0

0 D2

V 1

V 2

(10)

The estimated matrix A almost certainly has full rank, although it will
be ” close ” to a matrix of rank k. The matrix diagonal can be written as

D =
U1

U2

A V1 V2 =
U 1AV1 U 1AV2

U 2AV1 U 2AV2

(11)
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which satisfies the equations :
D1 = U 1AV1 = diag(ˆ

1, ..., ˆ
k) such that ˆ

i
ˆ

i+1.

D2 = U 2AV2 = diag(ˆ
k+1,..., ˆ

n) the smallest singular values estimated.
U 2AV1 = 0 = U 1AV2.

To study the stochastic behaviour of the smallest singular values esti-
mated of the matrix A, we must define . The perturbation matrix B has
zero mean and converges to zero (with probability one) as N increases. Each
of its components multiplied by N1/2 follows a central limit theorem and
is asymptotically Gaussian. Following Equation (5), the di erence between
corresponding components of A and A is order N 1/2 and one must take
as being of this order of magnitude. We can write

A = A + (A A) = A + [(A A)/ ] = A + B

where = N 1/2. Then for large N, 0 < < 1 and the elements of B’s
are bounded almost surely because of (1).

This perturbation of A induces corresponding perturbations to the sin-
gular values { i, i = 1, .., n} and singular vectors {Ui, and Vi i = 1, .., n} of
A. We need to know more about the stochastic behaviour of the estimated
singular vectors corresponding to the n k smallest singular values. To this
end we would state the following proposition:

Proposition 1 Let A = A + B a perturbed matrix with B = O(N 1/2).
Let U2 and V2 be the estimator of the left and right singular vectors as-
sociated with the n k smallest singular values estimated D2 of A, where
D2 = diag(ˆ

k+1,..., ˆ
n). Then for su ciently large N , there are bases de-

noted U2 (respectively V2) of null spaces of AA (respectively A A) for which
the following relations hold:

U2 = U2 + Op(N 1/2)

V2 = V2 + Op(N 1/2) (12)

D2 = U 2BV2 + Op(N 1) (13)
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where U2 = U2M and V2 = V2P , with M : (m k) × (m k) and
P : (n k)× (n k) are orthogonal matrices respectively.

Eq. (12) shows that, given A and thus U2 and V2, there exist perturbation-
dependent exact bases U2 and V2 of the null space of A which are close to U2

and V2. Eq. (13) shows that the same bases realize the SVD of the matrix B

up to first-order terms in . Then the smallest singular values D2 of A have
the same asymptotic distribution as the right hand side in (13).

In other words, Eq. (12) shows that the estimated singular vectors U2

(respectively V2) corresponding to the smallest singular values are equal to
the singular vectors U2 (respectively V2) premultiplied by the orthogonal ma-
trix M (respectively P ) plus other elements that disappear asymptotically.

To determine the distribution of the smallest singular values D2, we ex-
press D2 as function of the matrix A. To this end pre- and post-multiply
both sides of (4) by U2 and V2, respectively. Since the columns of V2 span
the null space of A, and U2 span the null space of A that is V2 N (A) and
U2 N (A ) implies AV2 = AV2P = 0 and U2A = M U2A = 0, we have

U 2AV2 = U 2BV2. (14)

Using (14) we get the following corollary

Corollary 1 . The estimates of the perturbed smallest singular values can
be written as

D2 = U 2AV2 + Op(N 1), (15)

where U2 and V2 are perturbation-dependent exact bases that are close
to U2 and V2.

From (1), we have A p A. Since the singular values i for i = 1, ..., n
are continuous functions of the elements of A, we have

i
p

i for all i (16)

where i = 0 for i > k.
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Therefore, from (16) D1
p D1 and D2

p 0.

We now derive the statistical properties of perturbed smallest singular
values of A which will enable us to develop a statistical test.

3.2 Inference statistical of the smallest singular values.

In this section, we develop the statistical properties of perturbed smallest
singular values. Since the (m k)×(m k) and (n k)×(n k) matrices M
and P are orthogonal respectively, and the singular values are invariant under
left and right multiplication by orthogonal matrices,then we can expressed
the estimates of the smallest singular values as:

D2 = U2AV2 + Op(N 1) (17)

where U2 and V2 are an arbitrary bases of the null-spaces of A.

The perturbed zero singular values can be approximated by the right
hand side in(17), we would propose to investigate the statistical properties
of this matrix. We denote by L

L = U2AV2 (18)
1

Eq. (18) defines a random matrix L as a function of the random matrix
A, the matrices U2 and V2 are non-random matrices since they contain sin-
gular vectors of A. Then the smallest singular values D2 of A has the same
asymptotic distribution as the right hand side of Eq. (18).

We can now state the main result: first, we shall consider the limiting
distribution of N1/2L as N .

Theorem 1 Let l = vecL, then the vector N1/2l is asymptotically normally
distributed with zero mean and covariance matrix given by

1If we use the perturbation-dependent exact bases U2 = U2M and V2 = V2P where the
matrices M and P are orthogonal respectively, then one can, also, expressed the matrix
L as L = MD2P a rotation of the smallest singular values around the origin. We will
show in the theorem 2 that test statistic is independent with respect to the orthogonal
transformation of the bases U2 and V2,see also Ratsimalahelo (2000).
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Q = (V2 U2) (V2 U2)

N1/2l N (0, Q)

where Q is finite and positive definite.

Let Q the estimate of Q which can be obtained by replacing the unknown
values U2, V2 and by the corresponding estimate U2, V2 and , the asymp-
totic distribution derived above can be used to construct a Wald-type test of
null hypothesis.

Theorem 2 .1) Let , U2 and V2 be consistent estimates of , U2 and V2,
then

Q P Q

where Q = V 2 U2 V2 U2 .

2) Under the null hypothesis, and given the conditions of Theorem 1, then
(i) the test statistic is given by

L(k) = Nl̂ Q 1l d 2
(m k)(n k)

(ii) L(k) is a su cient statistic invariant under the orthogonal transfor-
mations on the bases U2 and V2.

The Theorem shows that the test statistic L(k) is independent of the
orthogonal transformations on the bases U2 and V2. We can thus evaluate it
using the perturbation-dependent bases U2 and V2.

Recall that the estimator of L is
L = U 2AV2 = D2 = diag k+1, ..., n the smallest singular

values estimated.

Hence a test for H0 : r(A) = k of (2) at the level may be based on L(k)
statistic rejecting the null hypothesis if L(k) exceeds the a critical value of
chi-square.
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3.3 The singular covariance matrix case.

In subsection 3.2. we have assumed that the asymptotic covariance matrix
of the matrix A is non singular and in consequence the asymptotic covariance
matrix Q of the vector N1/2l is finite and positive definite. In many situations
in econometrics and statistics this assumption may be seriously violated. In
this section the singular covariance matrix case is addressed.

We assume that the rank of the asymptotic covariance matrix of di-
mension mn× mn is smaller than the number columns mn that is r( ) =
mf < mn. In consequence, the asymptotic covariance matrix is singular.
Since the asymptotic covariance matrix Q is a function of a matrix then
in this case the matrix Q may be singular. So the test statistics may not
have an asymptotic 2 distribution under the null hypothesis. In this, we
can generalise the above result to take account the singularity of the matrix
Q.

We will examine the condition in which the covariance matrix Q may be
singular. The covariance matrix Q = (V2 U2) (V2 U2) is of dimension
(m k)(n k)×(m k)(n k). The matrices U2 and V2 are full columns rank
(m k) and (n k) respectively, hence the matrix (V2 U2) has full column
rank (m k)(n k) In addition the columns of (V2 U2) are orthogonal
that is (V2 U2) (V2 U2) = (Im k In k). The rank of Q is equal to the
minimum between the number of columns in (V2 U2) and the rank of .

r(Q) = min{(m k)× (n k);mf} (19)

Therefore, the covariance matrix Q will be nonsingular if the rank of
is greater than or equal to (m k)× (n k).

We need the following proposition

Proposition 2 Suppose that r( ) converge almost surely to r( ).

Then:
i) + P + .
ii) Q+ p Q+.

where Q+ = V 2 U2
+ V2 U2 .

+ and Q+are the Moore-Penrose generalized inverses of the matrices
and Q = V 2 U2 V2 U2 respectively.
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Indeed it is worth emphasizing the fact that the consistency of for
does not imply consistency of + for + since the Moore-Penrose inverse is
not a continuous function of its elements.

By using proposition 2, we are able to construct a statistic which has a
central chi-squared distribution if, and only if, H0, is true.

Theorem 3 Under the null hypothesis and given the conditions of the propo-
sition 2, then the statistic test is given by

L(k) = Nl̂ Q+l d 2
v (20)

where Q+ = V2 U2
+ V2 U2 and v are degrees of freedom with

v being the rank of Q.
Note that the covariance matrix Q will be nonsingular if the rank of is

greater than or equal to (m k)× (n k) and we will use the inverse of Q
instead of a Moore-Penrose generalized inverse.

4 Strong consistency for a sequential testing
procedure.

It is well known that a sequential testing procedure does not lead to a consis-
tent estimate of the true rank matrix unless some adjustment is made to the
significance level, [see Cragg and Donald (1997); Robin and Smith (2000)].
In this section we will formalise the testing procedures that empirical re-
searchers often use in a less formal, and sometimes vague fashion. We will
also establish su cient conditions for strongly consistency.

We consider tests based on the statistic L(k). Starting with k = 1, we
carry out tests with progressively larger k until we find a test that does not
reject the null hypothesis that the rank of the matrix A is k. Let k be the
value of k for the first test we find that does not reject This is a sequential
testing procedure of the rank of the matrix.

The test statistic L(k) has an asymptotic chi-square distribution with v
degrees of freedom. We take kCN 0 the critical value employed with
the test statistic L(k) when k = k and the sample size is N. The value k

represent the quantile of a chi-squared distribution with v degrees of freedom
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and CN is a predetermined sequence of numbers whose choice is discussed
below. So that kCN be the (1 ) quantile of a chi-squared distribution.

Let k {1, 2, ...k 1} be such that L(k) kCN k > k with k

{1, 2, ...n}, L(k) kCN and k = k. In words, k the estimator of the true
rank of the matrix A is the smallest value of k for which some L(k) tests do
not reject the null hypothesis.

For a strongly consistent estimate of the rank of the matrix A, we assume
the function CN satisfy:

Assumption C (i) CN > 0; (ii)CN
N

0; and (iii) CN
log log N

.

Remark 1 :

1) The critical value kCN is similar to the significance level N satisfying
N 0 and ln N = o(N) of Theorem 5.8 of Potscher (1983) for weak

consistency of Lagrange multiplier (LM) tests for lag selection in ARMA
models.

2) The conditions (i)-(iii) admit a large range of possible choices of CN .
In the Monte-Carlo experiment, we took CN = logN.

The strongly consistent estimate of the rank of matrix requires the law
of iterated logarithm. As Gragg and Donald (1997) and Nishii (1988) and
without loss of generality, we assume that the matrix estimated A follows
the law of iterated logarithm (LIL). Zhao, Krishnaiah and Bai (1986) have
shown that if the matrix estimated follows the law of iterated logarithm then
the corresponding singular values follows also the law of iterated logarithm.

We now state the assumption under which the results below hold.

Assumption LIL. For the matrix estimated A and its singular values i,
the following relations hold with probability one

A A = O(log logN/N)1/2

i i = O(log logN/N)1/2 for i = 1,...,n.
where i = 0 for i > k then we have k+1 = O(log logN/N)1/2.

For any k = 1, ..., k 1, the null hypothesis r(A) = k is rejected almost
surely as N and let k = k then the null hypothesis does not reject
almost surely as N . Thus k is the value for which L(k) test does not
reject. The strong consistency of k is established in the following theorem.
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Theorem 4 Let k the value of the quantile of a chi-squared distribution
with v degrees of freedom and k0 denote the true rank of A. Suppose Assump-
tions C and LIL hold. Then under the null hypothesis, with probability one,
limN L(k)/CN k if k k0 and limN L(k)/CN k if k = k0.

This theorem shows that statistics L(k) provides a strongly consistent
estimate of k0 the true rank of A.

Test Algorithm

The strategy test is performed by the following steps:
Step 1: Estimate the matrix A.
Step 2 Perform their SVD and order its singular elements by increasing

values. Using the smallest singular values to obtain D2, U2 and V2.
Step 3 Construct L from D2 and evaluate Q by using , U2, and V2.
Step 4 Construct the p value for the statistic L(k)

p value = P (L(k) > kCN)

5 The model selection approach.

An alternative approach to estimate the rank of matrix is the information
criteria , the approach is analogous to the well-known model selection criteria
(SC) used for choosing between competing models.

Define the following criteria
IC(k,CN) = L(k) + (k)CN for k = 0,1,...,n-1

where function (k) and the constants CN for N 1 are specified by the
practitioners.

Let k the estimator of k that minimise the criteria function

k = arg min IC(k,CN) for k = 0, 1, ..., n 1 (21)

Next we will prove that k is a consistent estimator of k. This depends on
the functions (k) and CN . Thus the essential part of the criteria function is
the penalty term (k)CN . The higher we specify the penalty term, the lower
the risk of overestimating the rank and the higher the risk of underestimating
the rank. They are assumed to satisfy:

Assumption IC: (a) (k) is strictly increasing. (b) CN satisfies the con-
ditions (i) - (iii) of Assumption C.
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In application of the IC(k,CN) criteria, the practitioners will have to
specify the functions (k) and CN and the theorem provides an asymptotic
justification for many di erent values of the penalty terms. In statistical
literature, some fixed choices of CN have been suggested such as CN = 2
by Akaike (1974) (AIC); CN = log(N) by Schwarz (1978) (BIC) and CN =
c log log(N) for some c > 2 by Hannan and Quinn (1979) (HQIC).

Some comments on the choice of CN have been made by Bai, Krisnhaiah,
and Zhao (1989). The AIC procedure does not satisfy Assumption IC(b)
because CN = in consequence AIC is not consistent. As a result there
will generally be a positive probability of overestimating the rank of the
matrix.

Now we would give the following theorem concerning strong consistency
of the estimator k.

Theorem 5 Let k0 denote the true rank of A and k the estimated rank ob-
tained from Eq. (3). Suppose Assumptions LIL and IC hold, then limN

k = k0 almost surely.

Note that the strong consistency of k, follows P (limN k = k0) = 1.
This result shows that the underestimation and the overestimation of the
true rank is not possible asymptotically.

6 Some applications
In this section we will discuss how the methods described in this paper can
be used in two applications: determining the rank of demand systems and
constructing direct tests for instrumental variables.

6.1 The rank of Demand Systems

The rank of demand systems is defined as the maximum dimension of the
function space spanned by Engel curves, and its knowledge can provide in-
formation about the properties of consumer preferences such as functional
form, separability, and aggregability.

Lewbel (1991) has shown that a number of propositions in demand theory
relate to the rank of demand systems.

Roughly, any demand system has rank R if there exist R goods such that
the Engel curve of any good equals a weighted average of the Engel curves
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of those R goods. For example, a demand system having all linear Engel
curves is rank two, unless the Engel curves are all rays from the origin, in
which case it is homothetic and hence rank one. Quadratic Engel curves can
be either rank two or rank three.

Formally, the rank of any given demand system g(p, x,m) is the smallest
value of R such that each gi can be written as:

gi(p, x,m) =
R

j=l
ij (p,m) fj (p, x,m)

for some functions ij and fj and where p is the vector of prices of goods,
x the total expenditure level and m is a vector of observable demographic or
other non-income characteristics that a ect the preferences of the household.
For a fixed value of p, the rank of a demand system is defined to equal the
dimension of the space spanned by the functions g1 , g2, ...gR. All demand
systems have rank R N , the number of goods.

Demand system rank has many theoretical implications for separability,
aggregation, welfare analysis, demand system specification, and even portfo-
lio separation in asset demands [Lewbel and Perraudin (1995)].

6.2 Direct test for Instrumental Variables

It is well known that instrumental variables (IV) estimator provides consis-
tent, asymptotically normal estimates even in the presence of endogenous
regressors. To satisfy these properties an instrument should posses two key
properties: (1) relevance, that is a high correlation with that portion of the
endogenous regressors that cannot be explained by other instruments, and (2)
exogeneity, that is no correlation with the errors in the dependent variable.

Recent research, Shea (1997), Staiger and Stock (1997) and Hall, Rude-
busch and Wilcox (1996) has emphasized that an IV estimator will have poor
finite-sample performance if the instruments have low relevance for the re-
gressors. Thus it is necessary to clarify the link between instrument relevance
and model identification and to establish a test of instrument relevance.

Consider the linear regression model

y = X +
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where y is a (T × 1) vector of observations on the dependent variable,
X is a (T × k) matrix of regressors with rank (X) = k, is a (T × 1)
vector of observations on the error process with E( ) = 0 and var ( ) = 2IT

(homoskedastic) and is an (k × 1) vector of unknown parameters.

Suppose that the right-hand side variables are correlated with the errors,
plim( 1

T
X )=0, but that there exists a set of q instruments Z, q k with

plim( 1
T
Z ) = 0.

Then, following White (1984), we have the standard regularity conditions:
(a): plim( 1

T
Z X) = Qzx a matrix of finite constants with rank k.

(b): plim( 1
T
Z Z) = Qzz a matrix of finite constants with rank q.

(c): T 1/2Z d N(O, 2Qzz).

The vector of unknown parameters is commonly estimated by instru-
mental variables (equivalently two stage least squares TSLS or generalized
method of moments GMM). The instrumental variable estimator is

IV = (X PzX) 1X PzY

where Pz = Z(Z Z) 1Z , the projection matrix for Z.
The asymptotic distribution of IV is given by

T 1/2( IV ) d N(O, 2V ).

where V = (QzxQ
1

zz Qzx) 1.

This asymptotic distribution depends in some way on the relationship
between the instruments and regressors. If the rank condition in (a) is close
to being violated in finite samples then the true parameter is “close” to being
unidentified and this would have an adverse e ect on the distribution of the
IV estimator.

Hall, Rudebusch, and Wilcox (1996) propose a measure of the relevance by
expressing the IV estimator and its associated statistics in terms of canonical
correlations between the regressors and the instruments. The instrument
relevance depends on the moment matrix Z X. Then they suggest direct tests
of the rank condition based on the size of the smallest canonical correlation
of the matrix Z X. They also point out that, for usual asymptotic Wald
statistic screening based on such a pre-test, of which the first stage R2 and
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F statistics are special cases, an intended selection bias may be introduced
that worsens rather than mitigates finite sample bias.

Their tests of the rank condition use the determinantal equation and their
statistics is the likelihood ratio (LR). From a matrix analysis point view, the
determinant is certainly not a good tool for assessing the conditioning to
singularity of a matrix. In our context it easy to use the singular value
perturbation results to determine the rank of the matrix Z X.

7 Some Monte Carlo evidence

In this section we will present some simulation results to demonstrate both
the e ectiveness of our methods and the usefulness of the procedure. We
will then report the results of a Monte Carlo study of the performance of
the proposed test in determining the rank of the Hankel matrix of covariance
and in testing whether the order of autoregression moving average has been
correctly specified. Such empirical applications to ARMA model identifica-
tion have been used by Gill and Lewbel (1992) to compare their test with
that of Box and Jenkins, They have shown that the result of the LDU test
performed better than that of the Box and Jenkins test.

Moreover Ratsimalahelo (2001) used the L test statistic to determine the
Kronecker indices in the specification of the VARMA echelon form models.
Lardies and Ratsimalahelo (2001) generalised the L test statistic in deter-
mining the rank of the product of three matrices (or the matrix weighted)
and we have used this generalised L test statistic to determine the order of
multivariate time series models.

We will also compare the behavior of our tests with the behavior of the
test based on Gaussian elimination.

Before, we will summarise the procedure of a rank test of the matrix
based on Gaussian Elimination with complete pivoting of the matrix Â. A
development can be found in Cragg and Donald (1996) see also Gill and
Lewbel (1992).

A Test based on Gaussian Elimination.

Cragg and Donald (1996) propose a Wald-type procedure for testing the
null hypothesis H0k : r(A) = k against H1k : r(A) > k.
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Using the results described in Cragg and Donald (1996, Sections 3-5), we
proceed as follows.

Perform Gaussian elimination k steps with rows and columns on A the
estimator of the matrix A so that we have

P (k)AQ(k) = 11 12

0 22

(22)

for some matrices P (k) and Q(k) where 22 is a (m k)× (n k) ma-
trix. Each step of Gaussian elimination involves a possible exchange of rows
and columns (in search for the largest absolute value among the diagonal
elements whose row numbers are no smaller than the current one). Under
the null hypothesis the matrices P (k) and Q(k) converge to P (k) and Q(k)
respectively as N , so Eq.(22) holds in its limit as the k-step Gaussian
elimination on A.

If no rows or columns need to be exchanged in the process of Gaussian

elimination, we have a simple expression for 22 = A22 A21A11

1
A12 when

A is naturally partitioned. So 22 may be used as a test statistics of the
hypothesis that the rank of A is k. As the estimated matrix A is consistent
and asymptotically normally distributed, and according to Cragg and Donald
(1996), under the null hypothesis

Nvec( 22)
d N (0, V ).

where V = and is a function of the submatrices obtained by
partitioning A.

Then,

= Nvec( 22) V
+vec( 22)

where V + is the Moore-Penrose generalized inverse of V .
The test statistic is refered to Gaussian elimination test (GE) and it

converges to the chi-square distribution with v degrees of freedom with v be-
ing the rank of V. This test statistic is more general than Cragg and Donald’s
test statistic, since they consider only the nonsingularity of the asymptotic
covariance matrix V i.e. the nonsingularity of the covariance matrix of
the matrix A (because the matrix is full row rank). In our procedure, we
consider a situation more general, the covariance matrix can be of reduced
rank.
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There are other methods for testing the null hypothesis that the rank of
the matrix A is k. First more recently Robin and Smith (2000) proposed
a test statistics which is distributed asymptotically as a linear combination
of independent chi-squared random variables. The asymptotic critical values
of the test statistic are not tabulated. The test requires the percentiles of a
weighted chi-squared distribution for which computationally intensive algo-
rithms need be used. Moreover the weight estimation introduces variability
and hence potentially less accuracy, to the testing procedure. Next Cragg
and Donald (1997) proposed a test statistic based on a minimum chi-square
criterion. The procedure need to minimize the objective function numerically
which is often very di cult. We will not include these two last tests in our
comparisons.

We now turn to the Monte-Carlo study. Data are generated according to
a univariate ARMA process of the form

a(L)yt = b(L)ut t = 1, ..., T

The design di ers with respect to the sample size T and the value of
parameters a(L) and b(L). We would specify two di erent ARMA models:

-(M1)- the first model: ARMA (2,1)
a(L) = 1 + 0.64L + 0.7L2

b(L) = 1 + 0.8L.

-(M2)- the second model: ARMA (4,2)
a(L) = 1 2.76L + 3.809L2 2.654L3 + 0.924L4

b(L) = 1 0.2L + 0.04L2

In the two models, the errors are considered Gaussian white noise with
zero mean and unit variance. These two models are considered as a starting-
point for investigation of the performance of the di erent methods. In model
M1, the roots of the polynomials a(z) and b(z) are inside the unit circle where
z is a complexe variable. Thus the process yt is stationary. For model M2,
the situation is more delicate, the roots of a(z) are situated much closer to
the unit circle, the process yt is nonstationary.

An estimate the rank of sample Hankel matrices is as follows : For each
sample size, a sample Hankel matrix Â = Ĥp where the (2p 1, 2p 1) matrix
is composed of the estimated covariance matrices of the process. We consider
p = 4 for first model (M1) and p = 5 for the second model (M2).
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The matrix is defined as the covariance matrix of vec(Ĥ). Then a con-
sistent estimate of is obtained by replacing all quantities in the summation
by their sample counterparts. However, for a small sample size, this will turn
out to be quite a poor estimate of . Accordingly in the LDU method we
use a parameter to truncate the summation.

We used three di erent sample sizes T: 100, 300 and 1000. For each
simulated sample, 200 initial observations have been discarded, to minimize
the e ect of initial condition. The first observation is set equal to the mean
of the process, zero. The results are based on 1000 independent replications.
In using the L test statistic, CN was chosen to be logN . Clearly, CN =

logN grows very slowly as N increases. In the specification of the HQIC
criterion, we take c = 2.02.

We report the results that measure the performance of the model selection
criteria SC (AIC, BIC, HQIC), L and GE procedures. For each procedure,
we calculated the probabilities that the procedure

1. estimated correctly the true order r0

2. overestimated the true order
3. underestimated the true order.
In the first case the probability refers to the percentage of times that the

correct order is estimated for a certain number of runs, each on independent
realisation of the data. In the other cases, (over-and underestimate the true
order), the probabilities are defined in a similar manner. A procedure with a
high probability to estimate correctly r0 leads to a performance of the rank
test method.

For each of these tests we computed the probability of rejecting the null at
5% nominal significance levels. Each probability is calculated as percentage
of times in 1000 replications that the value of the test statistic exceeds the 5%
critical value of the appropriate asymptotic distribution. All computations
were carried out using the MATLAB programming language.

7.1 Monte Carlo results

Now we shall present the Monte Carlo results for the probabilities of estimate
the order. Table 1 reports the probabilities for SC-AIC, SC-BIC, SC-HQIC,
L and GE for the first model (M1) and for three di erent sample sizes N
equal to (100, 300, 1000). For SC-BIC, the probability of selecting the true
order r0 increases from 0.732 to 0.853 to 0.990; while the probability of
underestimate declines from 0.156 to 0.118 to 0.000. For SC-HQIC, the
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corresponding changes are from 0.740 to 0.843 to 0.982 and from 0.136 to
0.098 to 0.000 respectively. For L, the corresponding changes are from 0.950
to 0.989 to 0.992 and from 0.015 to 0.001 to 0.000 respectively.. For GE, the
corresponding changes are from 0.795 to 0.976 to 0.985 and from 0.130 to
0.004 to 0.000 respectively..

The probabilities of SC-AIC are much less sensitive to the sample size N
than are those of the other four procedures. As the sample size N increases
from 100 to 300 to 1000, the probability of selecting the true order by SC-AIC
changes from 0.747 to 0.754 to 0.756 and the probability of the underestimate
decreases from 0.048 to 0.037 to 0.000. The fact that the probability does not
increase toward one as N increases, reflects the inconsistence of the SC-AIC
procedure. For the smallest sample size SC-AIC performed better than the
other two SC procedures. But for larger samples sizes, it does not perform
as well as the other two SC.

Our results suggest that SC-AIC work best for the smallest sample size
whereas SC-BIC, SC-HQIC work best for all other sample sizes. GE and L
perform very well for all sample sizes. The GE procedure showed a behaviour
very similar to that of the L procedure and its performance very closely. It
is only for very smallest samples sizes, that a small di erence in performance
is visible.

Next, we shall consider the second model (M2). The motivation here is
to evaluate the performance of the various procedures when the process is
nonstationary. Table 2 presents the probabilities for SC-AIC, SC-BIC, SC-
HQIC, L and GE for three di erent sample sizes N equal to (100, 300, 1000).
The true model is in fact nonstationary ARMA(4, 2) with the order r = 4.
The consistent procedures (SC-BIC, SC-HQIC, L and GE) show a clear and
rapid tendency to converge towards a correct rank even if the process is
nonstationary. But the performance of SC-AIC changes relatively little.

Overall, there are three main points that can be drawn from the probabil-
ities of selecting the true order. The SC-AIC based correct decision display
practically no variability across all samples sizes, pointing to the correct or-
der approximately 55-75% of the times across all sample sizes. It has a strong
tendency to overrank and no tendency to improve as N increases. The two
other SC procedures (SC-BIC and SC-HQIC) show a relatively good per-
formance. Finally The L and GE procedures appear to perform best in
all-around sense, they showed a very similar behaviour.
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Table 1
Model M1: ARMA(2,1)

True rank k = 2, the true parameter values: a1 = 0.64; a2 = 0.7; b1 = 0.8

SC-AIC SC-BIC SC-HQIC L GE
Sample size: N = 100
correct 0.747 0.732 0.740 0.950 0.795
overestimate 0.205 0.112 0.124 0.035 0.075
underestimate 0.048 0.156 0.136 0.015 0.130
Sample size: N = 300
correct 0.754 0.853 0.843 0.989 0.976
overestimate 0.209 0.029 0.059 0.009 0.020
underestimate 0.037 0.118 0.098 0.001 0.004
Sample size: N = 1000
correct 0.756 0.990 0.982 0.992 0.985
overestimate 0.244 0.010 0.018 0.008 0.015
underestimate 0.000 0.000 0.000 0.000 0.000
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Table 2.
Model M2: ARMA(4,2)

True rank k = 4,
the true parameter values: a1 = 2.76; a2 = 3.809; a3 = 2.654; a4 = 0.924;
b1 = 0.2; b2 = 0.04

SC-AIC SC-BIC SC-HQIC L GE
Sample size: N = 100
Correct 0.452 0.405 0.456 0.412 0.388
Overestimate 0.303 0.095 0.149 0.000 0.000
Underestimate 0.245 0.500 0.395 0.588 0.612
Sample size: N = 300
Correct 0.570 0.694 0.714 0.796 0.805
Overestimate 0.333 0.086 0.111 0.000 0.000
Underestimate 0.097 0.220 0.175 0.204 0.195
Sample size: N = 1000
Correct 0.575 0.950 0.916 0.955 0.945
Overestimate 0.330 0.005 0.030 0.000 0.000
Underestimate 0.095 0.045 0.054 0.045 0.055
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8 Conclusions

In this paper we proposed new methods for determining the rank of an unob-
served matrix for which a root-N consistent estimator is available. It is based
on matrix perturbation results applied to estimated matrix. It allows to han-
dle more general situations where the covariance matrix is definite positive
or semidefinite positive. Conditions for strongly consistency of sequential
testing strategy and information theoretic criterion procedures are obtained.
The performance of the methods is assessed by means of Monte-Carlo exper-
iments to determine the order of scalar ARMA processes. Its performance
appears to be similar to that of LDU decomposition.

The two methods gave similar results. Accordingly the proposed pro-
cedure provides an alternative to the LDU decomposition, which from a
practical point of view involve a much higher computational burden. The
test procedure which should be preferred in the present ARMA order de-
termination context is the simpler one: test the smallest singular values of
the Hankel matrices of increasing order. It can then be implemented with-
out performing a full singular values decomposition of the di erent Hankel
matrices since only the smallest singular values are needed. This drastically
reduces the complexity of the test.

This study provides a theoretical justification for a number of statistical
tests for which one can determine how many singular values of an estimated
matrix should be declared equal to zero.

The methods proposed in this paper may be particularly useful in se-
lecting the correct moment condition for a generalized method of moments
(GMM). The procedures also can consistently determine whether there is
a su cient number of correct moment conditions to identify the unknown
parameters of interest.
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Appendix of Proofs.

Proof of Proposition 1.
Following the SVD of the matrix A, we have

U AV = D =
D1 0
0 0

(A1)

Let us consider the perturbed matrix

A = A + B

where = N 1/2 and for large N, 0 < < 1.

The SVD of the matrix A corresponding U, V ,D such that

U AV = D =
D1 0

0 D2

(A2)

with U = U1 U2 and V = V1 V2 .

We will indicate mainly how U2, V2 and D2, the zero singular elements
are perturbed under the assumption that the zero singular value D2 of mul-
tiplicity n k is well separated from the others, i.e.

min i >> for i = 1, ..., k (A3)

This means that the gap between the zero and non-zero singular values
must be order of magnitude greater than .

Applying the orthogonal transformations U and V to A, one obtains

U AV = D + U BV = D + G

where

G =
G11 G12

G21 G22
=

U1BV1 U1BV2

U2BV1 U2BV2

we can be written
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U AV =
D1 + G11 G12

G21 G22
(A4)

a matrix that no longer possesses a block diagonal structure.

Before we try to recover this structure, let us introduce the SVD of the
order (n k) matrix G22:

G22 = U2BV2 = M 22P

where M and P are orthogonal matrices and 22 is a diagonal matrix
such that

22 = M U2BV2P (A5)

The two modified orthogonal transformations are thus defined:

U = [ U1 U2 ];with U2 = U2M

V = V1 V2 ;withV2 = V2P (A6)

Since we only changed the bases of the null-space, we still have U AV = D
as in (A1), but in addition, these new bases (A4) can be rewritten as

U ÂV = D + G =
D1 + G11 G12

G21 22

(A7)

What we did is specify perturbation dependent bases U2 and V2 for the
null-spaces of AA and A A in place of generic bases U2, and V2. To this
purpose we block diagonalized the second member of (A7). We would propose
to use two further orthogonal transformations, R and Q which we would
define in their partitioned form:

R = I + F + Op( 2) = I +
0 F12

F21 0
+ Op( 2)

where F12 = D 1
1 G 21
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The matrix R is a perturbed identity matrix which allows us to diagonal-
ize it up to first order terms in , and similarly

Q = I + H + Op( 2) = I +
0 H12

H21 0
+ Op( 2)

where H12 = D 1
1 G12.

One verifies that these matrices are orthogonal up to second order in .
So that pre-and post-multiply equation (A7) by R and Q, respectively, yields

R U AVQ =
D1 + 11 0
0 22

+ Op( 2) (A8)

Therefore

UR = [ U1 F12 U2 + U1F12 ] + Op( 2) (A9)

Ṽ Q = [ V1 V2H12 V2 + V1H12 ] + Op( 2)

Comparing the relations (A8) and (A9) with (A2), we have

U2 = U2 + U1F12 + Op( 2)

V2 = V2 + V1H12 + Op( 2).

D2 = 22 + Op( 2)

Since the matrices U1 and V1 are orthonormal respectively, then U1 and
V1 are order Op(1). Following the assumption (A3) D1

1 is bounded, Op(1)
which implies that F12 and H12 are order Op(1). Consequently, the second
terms in these first two equations, are order Op( ). We then have

U2 = U2 + Op( )
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V2 = V2 + Op( )

D2 = U 2BV2 + Op( 2).

Proof of Theorem 1.

Let l = vecL, the vectorization of the matrix L

N1/2l = (V2 U2)N
1/2vecA

The mean is null

E(N1/2l) = (V2 U2)E(N1/2vec(A)) = N1/2(U2 AV2) = 0

because AV2 = 0, the column of V2 span the null space of A
And the covariance is

V (N1/2l) = NE(ll ) = E (V2 U2)(N
1/2vecA)(N1/2vecA) (V2 U2)

= (V2 U2) E N1/2vecA (N1/2vecA) (V2 U2)

Following the Eq.(1), one obtain

E[((N1/2vecA)(N1/2vecA) ] =

thus the covariance matrix of the vector N1/2l is

V (N1/2l) = Q = (V2 U2) (V2 U2 ).

Proof of Theorem 2.

First, we will show that L(k) does not depend on the orthogonal transfor-
mations on the bases U2 and V2. Consider the perturbation-dependent exact
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bases U2 = U2M and V2 = V2P where the (m k)×(m k)and (n k)×(n k)
matrices M and P are orthogonal respectively.

Let L = U 2AV2 = (U2M) A(V2P ) by the vectorization of the matrix L,
we get

vecL = (P V2 M U2)vecA = (P M )(V2 U2)vecA

This can be written by

vecL = (P M )vecL

The asymptotic covariance matrix Q of N1/2vecL is equal to Q = (P
M )Q(P M) and the quadratic form is

L(k) = N(vecL) [Q] 1(vecL)

= N(vecL) (P M)[(P M )Q(P M)] 1(P M )(vecL)

Since (P M) is an orthogonal matrix, thus we have

L(k) = N(vecL) (P M)[(P M )Q 1(P M)](P M )(vecL)

= N(vecL) Q 1(vecL)

= L(k).

We have thus established that L(k) is invariant with respect to the or-
thogonal transformations on the bases U2 and V2.

Next, without loss of generality, we will take in the sequel that the or-
thogonal matrices M and P to be the identity matrix.

Let U2 and V2 be the estimate of U2 and V2, then following proposition
1, we have :

U2
p U2 and V2

p V2 so that U2 and V2 are consistent estimator of U2

and V2 respectively. We get also V2 U2
P (V2 U2).

Let be the estimate of , since A P A, clearly we have P .

As the asymptotic variance Q is full rank, then

Q = V 2 U2 V2 U2
P Q = (V2 U2) (V2 U2)
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So Q is a consistent estimator of Q.
Finally, since the rank of the asymptotic covariance matrix Q is equal to

r(Q) = (m k) × (n k), and Q is a consistent estimator of Q, then the
quadratic form Nvec(L) Q 1vec(L) converges in distribution to a chi-square
random variable.

We note that L = U2AV2 = D2 is the diagonal matrix of the n k smallest
singular values of A. As A is consistent estimator of A then L is consistent
estimator of L (also by Slutsky theorem).

Proof of Proposition 2.
First, we establish Proposition 2(i). Note that consistency of for does

not imply consistency of + for + since the Moore-Penrose inverse is not
a continuous function of its elements. In fact if r( ) converges almost surely
to r( ) that is P [r( ) = r( )] 1 as N and since P then the
Moore-Penrose inverse satisfies + P +, (see Andrew (1987, Theorem
2)).

Now Proposition 2(ii), the (mn) × (m k)(n k) matrix (V2 U2)
has full column rank (m k)(n k) since U2 and V2 are full column rank
(m k) and (n k) respectively. Moreover, the columns of (V2 U2) are
orthonormal, so that (V2 U2)(V2 U2) = (Im k In k) = I(m k)(n k) hence
(V2 U2)

+ = (V2 U2). Therefore the Moore-Penrose generalized inverse of
Q is

Q+ = [(V2 U2) (V2 U2)]
+ = (V2 U2)

+ (V2 U2) .

Following proposition 1, V2 U2
P (V2 U2) and since r V2 U2

P

(m k)(n k), then the convergences almost surely of the rank of the
matrix to the rank of the matrix imply that r(Q) converges almost
surely to r(Q). Thus, since Q P Q, we have Q+ P Q+ where Q+ =

[ V2 U2 V2 U2 ]+ = V2 U2
+ V2 U2 .

Proof of Theorem 3.
Following the result of Moore (1977) see e.g. Andrews (1987) for any

consistent estimator Q+of Q+, the quadratic form N l Q+l will have an as-
ymptotic chi-squared distribution with v degrees of freedom .

Proof of Theorem 4.
To prove the strong consistency, we need to show the following
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1) The null hypothesis H0 : k = 1, 2, ..., k 1 are rejected almost surely
as N this is equivalent to limN L(k)/CN k.

2) However, the null hypothesis H0 : k = k is accepted almost surely as
N or equivalent to limN L(k)/CN k.

Following the Assumption LIL, if k k0 then there exists a constant
c 0 such that

l Q+l c

and on the other hand for k k0 we have

l Q+l = O(log logN/N)

Firstly, assuming that k k0, and CN satisfies the Assumption C, then
we have

lim
N

L(k)

CN
= lim

N

N

CN
l Q+l = a.s.

where the convergence holds by Assumption C(ii) and a.s. denote the
abbreviate ”almost surely” (i.e., with probability one). This result means
that, for any positive number k, L(k)/CN k almost surely, as N ,
thus the null hypothesis is rejected with probability one.

Next let us assume that k = k0. This implies

lim
N

L(k)

CN
= lim

N

O(log logN)

CN
= 0 a.s.

by Assumption C(iii). This result means that, for any positive number

k, L(k)/CN k almost surely, as N .

Proof of Theorem 5.
To prove the strong consistency of k, i.e. P (limN k = k0) = 1 or

limN k = k0 a.s. It is enough to prove that the underestimation and the
overestimation of the true rank is not possible asymptotically.

We can assert with probability one that for large N , for k k0

L(k) L(k0) cN

where c > 0 is a constant.
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On the other hand, under the assumption for k > k0, we have

L(k) = O(log logN)

L(k0) = O(log logN)

Case 1. We will prove that if k < k0 then the underestimation of the true
rank is not possible asymptotically.

IC(k, CN) IC(k0, CN) = L(k) L(k0) + [ (k) (k0)]CN

c + [ (k) (k0)]
CN

N
c > 0

Since the second term on the right-hand side converge to zero as N
tends to infinity from Assumption C(ii) and since c > 0 thus asymptotically
we have IC(k, CN)) IC(k0, CN) > 0 a.s. This implies liminf k k0 a.s.,
for N .

This result means that the minimum cannot be attained at k < k0 and
the underestimation of the true rank is not possible asymptotically.

Next we will show that the true rank k0 will be preferred to k k0,
asymptotically, this is the case of overestimation of the true rank .

Case 2. We will prove that if k k0 then the overestimation of the true
rank is not possible asymptotically.

IC(k,CN) IC(k0, CN) = O (log logN) + [ (k) (k0)]CN

IC(k,CN) IC(k0, CN)

CN
= O

log logN

CN
+ [ (k) (k0)]

The term log log N
CN

tends to zero from Assumption C(iii) and CN > 0 and
(k0) < (k) then asymptotically, we have IC(k,CN) IC(k0, CN) > 0 a.s.

This implies limsup k k0 a.s for N . Consequently, the overestimation
of the true rank does not occur asymptotically.

Finally, taking the above two cases, it imply that limN k = k0 a.s.
The minimum of the criteria function is attained at k = k0.
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