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ABSTRACT

Few authors have studied, either asymptotically or in finite samples,
the size and power of seasonal unit root tests when the data generating
process [DGP] is a non-stationary alternative aside from the seasonal
random walk. In this respect, Ghysels, lee and Noh (1994) conducted a
simulation study by considering the alternative of a mnon-seasonal
random walk to analyze the size and power properties of some seasonal
unit root tests. Analogously, Taylor (2005) completed this analysis by
developing the limit theory of statistics of Dickey and Fuller Hasza
[DHF] (1984) when the data are generated by a non-seasonal random
walk. del Barrio Castro (2007) extended the set of non-stationary
alternatives and established, for each one, the asymptotic theory of the
statistics subsumed in the HEGY procedure. In this paper, I show that
establishing the limit theory of F-type statistics for seasonal unit roots
can be debatable in such alternatives. The problem lies in the nature of
the regressors that these overall F-type tests specify.
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1 INTRODUCTION

The stochastic nature of the seasonality seems to gain ground in
empirical studies. Several aspects related to seasonal unit root tests
were treated in the literature. In this respect, the power of these tests
against non-stationary alternatives is an important issue that recently
acquired some concern. To the best of our knowledge, Ghysels, Lee,
and Noh [GLN] (1994) are the first authors who studied this problem.
In fact, in a Monte Carlo study, they showed that against a non-
seasonal random walk, the power of the tests of Dickey, Hasza and
Fuller (1984) lies well lower than that of the tests of Hylleberg, Engle,
Granger and Yoo [HEGY] (1990). Ghysels et al. guessed that “the
Dickey et al. test may not separate unit roots at each frequency” (p.
432). The restriction behind the Dickey et al. procedure is that all the
unit roots (conventional and seasonal roots) have a modulus of one.
Thus, it is clear that the conventional random walk does not fulfil this
requirement. However, Rodrigues and Osborn (1999) showed that if
this restriction holds, the power of the tests of Dickey et al. would
have a proper superiority in finite samples with regard to that of the
tests of Hylleberg and al. (1990). In an interesting contribution, Taylor
(2003) analysed the large sample behaviour of the seasonal unit root
tests of Dickey et al. when the data generating process (DGP) is a
non-seasonal random walk, i.e. when the series only admits a zero
frequency unit root. In such case and as shown by Taylor (2003), all
the Dickey et al. statistics have non-degenerate limiting distributions.
These results theoretically explain the empirical findings of GLN.
Furthermore, Taylor (2005) showed that asymptotically the statistics
of the Dickey et al. augmented test will also do not diverge. In the
same context, del Barrio Castro (2006) generalized the results of
Taylor (2003) to a set of non-stationary alternatives which include the
non seasonal random walk. He found also that the Dickey et al.
statistics did not have standard limiting distributions and did not
diverge. Based on the same methodology, del Barrio Castro (2007)
established the limit theory of the statistic of Fisher and those of
Student subsumed by the HEGY procedure. Accordingly, he
theoretically derived the effect that can asymptotically have one unit
root on the others at different frequencies. Following the terminology
of Busetti and Taylor (2003), we have, in these situations, “unattended
unit roots”. However, del Barrio Castro (2007), in his large sample
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analysis, did not directly consider the effects of non-stationary
alternatives on the overall F-type statistic of seasonal integration'
which is complementally specified for the HEGY procedure by GLN
(1994).

The well-known Fisher tests of the overall seasonal integration null
hypothesis are those of Kunst (1997) and Hylleberg et al. (1990).
Although these two tests are asymptotically related, they have a main
difference in the nature of the explanatory variables used in their basic
regressions. Indeed, Kunst’s regressors are original variables; however,
the HEGY procedure involves regressors that are obtained by non-
singular linear transformation of those used by Kunst. Consequently,
the HEGY regressors show an ultimate property, to wit, the
asymptotic orthogonality.

In a recent paper, Osborn and Rodrigues (2002) developed an
appealing and unifying approach for deriving asymptotic results
regarding the statistics of the most commonly used seasonal unit root
tests. The data generating process (DGP) considered by these authors
is the seasonal random walk. This approach is based on the use of
circulant matrices which could, in seasonal context, retrieve the limit
theory of the involved statistics as well as conveniently traducing the
dynamics of time series and its evolution across different seasons. In a
similar vein, Haldrup, Montanes and Sanso (2005) used this approach
to show the effects of outliers on the limit theory of seasonal unit root
tests.

However, most often economic time series are not simultaneously
affected by all seasonal unit roots. This empirical finding is all the
more consolidated since the practitioners jointly use the deterministic
seasonality and seasonal unit root tests as advised by Hylleberg (1995).
Therefore, it is interesting to consider non-stationary alternatives,
aside from the seasonal random walk assumption, in the finite and
large sample studies on the part of seasonal unit root tests.

Here I focus on whether the overall F-type statistic limit theory can be
directly and rigorously established when the observed series is
generated from the non-stationary alternatives treated by del Barrio
Castro (2006). I mean by the word “directly” that in establishing the

'In this paper, we adopt the seasonal integration definition of Ghysels and Osborn
(2001, p. 43)
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limit theory in question, we do not resort to transformations of the
involved regressors. More specifically, I show that when the DGP is
one of these non-stationary alternatives and the considered regressors
do not satisfy the asymptotic orthogonality, the approach proposed by
Osborn and Rodrigues (2002) doesn’t work.

The paper proceeds as follows. In the following section, I give some
preliminaries about the overall F-tests for seasonal unit roots. I expose
the most famous ones, namely those of Hylleberg et al. (1990) and
Kunst (1997). Next, I specify a possible set of the data generating
processes (DGP) for observed quarterly series. The study can be
extended to another data observation frequency, but I retain the
quarterly case for illustrative purposes. Put differently, considering
quarterly time series affords a clear analysis on account of the reduced
number of involved unit roots. The third section discusses how
specious asymptotic results, regarding F-type statistics for seasonal
unit roots in their entirety, can be reached under non-stationary
alternatives. This theoretical study is accompanied by a simulation
exercise where I allow for possible augmentation with lagged terms of
dependent variable in the regression models corresponding to the
studied tests, in order to assess their performance against non-
stationary alternatives. In the last section, I conclude.

2 OVERALL SEASONAL INTEGRATION TESTS

2.1 The Kunst test

The Kunst test for quarterly time series is based on the following
regression

Ay, =ay,  +..+toy,  +oy  +e, t=1..T, (1)

which is an F-type test of the form

= (T 4)EE 2/ €9, (2)

GGy

where £ and & are vectors of residuals estimated under the null

H :a =..=a,=6=0 and alternative hypotheses of the test. I

1
assume without any loss of generality that al the initial values required
by Eq. (1) are null. We can remark that Kunst did not divide the
numerator of the statistic (2) by 4, the number of restrictions, as we
did it to perform a conventional Fisher test.
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2.2 The HEGY test

The basic regression for the HEGY test, without any augmentation
and with no deterministic terms, is:

A4yz = ﬂ—lyll—l + ﬂ—zym—l + 7T3y3z—2 + 7T4y3t—1 + Ez’ t= 1""’T’ (3)
where

y, =+ L+ + L)y,
y, =—(1—L+L'—L)y, (1)

Y, =—1-L)y,
with Lis the lag operator.
GLN has extended the HEGY approach with a joint test statistic F

1234

for the null hypothesis, H

,:m =7, =7, =7, =0, implying all unit
roots in data observed at quarterly frequency. H is an overall

hypothesis for seasonal integration SI (1) in accordance with the
notation of Ghysels and Osborn (2001).

Note that we have

Yy 1 1 T 1|y,
(o _ -1 1 -1 1}y, (5)
(T 0 -1 0 1|y,
Yoy -1 0 1 0}ly.,

We can deduce from (5) that the regressors of the Kunst test are non-
singular linear transformations of those of the HEGY test.

Consequently, the F-type statistics, F andF;M& ; /4, will have the

771234
same limit theory. Given that the two statistics are asymptotically
related, the analysis is confined to that of Kunst in the sequel.

Hence, we can observe that there exist a little bit differences between
the critical values of both statistics. In general, such critical values are

tabulated supposing that the DGP of y, is:

yt = yH + et : (AO)



Ghassen EI Montasser 29

In this paper, I assume that the DGP of y drawn from one of the

following stochastic processes:

Y = Ya TE (A.1)
Y= Y TE (A.2)
Y=Y, 6 (A.3)
Y=Yt (A.4)
and

Y=Y~ Y, Y, te. (A.5)

By using the double subscript notation, we can define the following
annual vectors:

an = (yln’ y?n’ y3n ’ y4n ) '7
and
E =

I
(eln,’ e2n ’ e:jn ? eln) ’

where we suppose that n=1,...,N and in the T observations there is
N years, simply let T'=4N. To keep matters tractable, I suppose that

Y, = (Y0, Yog» Ysor ¥sy) ' = (0,0,0,0).

The error processes in the alternatives (A.1)-(A.5) follows a stationary
AR(p)

¢(L)e§'“ = US’I,,
P .

where ¢(z)e, =1—> ¢z and s=1,... 4.
i=1

The roots of ¢(z) =0 all lie outside the unit circle |z| =1. As for the
error sequence {v}, it depicts an innovation process with constant

conditional variance o® (see Spanos, 2003, p. 443). Similarly to what
has been conjectured by del Barrio Castro (2007) regarding to the
error structure in the non-stationary alternatives described above, I

suppose that the vector E has the following dynamics:
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where v = (v, ,v, ,v, ,v, )", and I define the sequence of 4 x4 matrices

2n? 73n? Tdn
as:
1 0 0 0 ryjzl ryj4—1 ryj4—2 7]473
I, = w0l r = R e R I 3 Es BN
% v 10 Vier Vi Via o Vi
Y Y M1 Yisrs Viarz Vi Vi
with

y(2)=1-2 7,2’
=1

being the inverse of ¢(z). Finally, T"(1) is defined as

rm=>yrT.

J=0

del Barrio Castro (2006) wused the vector of moving average
representation in order to express the alternatives (A.i), i =1,...5, in a
vector of quarters representations where the observations of each year

are stacked in the above defined vectors ¥ et E | let
(1-B)Y =(©,+OB)E , i=12,...5 (6)

where B is the annual backward operator. The 4x4 matrices ©, and

©! (corresponding to the alternatives A.1-A.5) are defined as follows

1000 0111
1100 0011
0, = , O = for (A.1), (7.1)
1110 0001
1111 000 0
1 0 0 0 -1 1 -1
11 0 00 -1 1
- _ for (A.2 2
%=1 o @ =lo o o _q Pr A2 (7.2)
11 -1 1 0 0 0
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1000 0010
0100 000 1
o = o' = for (A.3 7.3
°=l1 01 o 0 0 o of (A3 (7.3)
0101 000 0
0 00 00 -1 0
0 1 00 00 -
4= 4= for (A4 4
%=1 0 10" % 70 o o | for (A4), (7.4)
0 10 1 00 0
1 0 0 0 000 —1
11 0 000 0
= S = for (A. .
o= L1 he=ll o ] for (A5) (7.5)
0 0 -1 1 000 0

The following result was established by del Barrio Castro (2007):

1 « . .
—F=Y , -, Bi(r)7 BY.(T) = CY.F 1)B(r), CZ =0 +0,i=12..5 (8)
o VN S 0 !

where the symbol “— 7 denotes the convergence of probability

measures, B/(r)is a 4x1 vector Brownian motion process with
variance matrix Q =o’CI ()I"(1)C, and B (r) is a vector Brownian
motion with variance matrix ¢”/,. The subscript i corresponds to the
alternative (A.i), 1= 1,..., 5.

Note that the rank of C,, i=1,..,5is the number of (seasonal) unit

roots implied by the process (A.i), i =1,...,5. In order to determine the
number of cointegration relations between the quarters, corresponding
to every process (A.), i =1,....,5, we have to subtract from the

periodicity of the quarterly data, i.e. 4, the rank of the matrix C,,
i=1..,5. We can rewrite Eq. (8) more precisely by identifying the
stochastic processes B/(r), i=12,..5, on the grounds that there is

always cointegration among the quarters of the time series; see del
Barrio Castro (2007, p.915).
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3 LIMIT THEORY OF THE KUNST TEST UNDER
NONSTATIONARY ALTERNATIVES

I first introduce the following lemma which can be directly deduced
from the preceding result of del Castro Barrio (2007) and lemma A.1 of
Osborn and Rodrigues (2002).

Lemma. Suppose that the DGP of y, in (1) is given by the alternatives

(A.1)-(A.5) and suppose that the vector (e, ,....e, ),Vn,satisfies the

assumption 1 of Phillips (1986, p.313), we have under the null of the
Kunst test as T — oo

N 1 1 1 {
a) NY VY, =, o [ MB(r)B(r) Mdr, i =12,....5.
n=1

N
b) N7V, e, =

n=1

d

o*M, [ BO)B(Y M, i =12,...,5.
0
T 2
Q) Ty, — U—le(r)'M'MB(r)dr k=14, i=12,..,5.
p t—k d 16 0 i i ) il b 9 <~y b)
s ol et .
d) T ;yHyH ~i T fo B(r)MH H M B(r)dr, k= j,i=12,..,5.

o ot e ‘
e) T 1;%; - Ifo B(r)M'H MdB(r), kK=1,...,4, i=12,...5
where ¢ = (¢, ., ¢, ,¢,) and M, =CI(1).

1n? 7207 “3n? Tdn

The matrix H,, k=1234,is a particular permutation matrix order 4
which produces the following elementary operations: let a matrix K
having 4 lines, the operation H K moves the last row of K to the top
row of H K and the other rows moved down one place. More
generally, H K shifts the final iths rows to the top of the matrix while
the remaining rows correspondingly moved down. Note that H, =1,

(see Golub and Van Loan, 1996, p. 109-112, for details).

The preceding lemma is mathematically correct however its use, under
certain circumstances, may not be valid as will be explained in the
sequel.
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Let denote by & the OLS estimator of the vector a:(a17a2,a376)'
defined in the Eq. (1). When the DGP of y,in (1) is given by one of

the alternatives (A.1)-(A.5), we can achieve this nugatory asymptotic
result by using the preceding lemma:

R.l)%(d —a) —, F7'f,where
[ BoymmaM B [ By MEEMBC [ BEYMEHMBE) [ B MHM B

sl " B(r) M H,HMB(r)dr [ ‘1 B(r) M.H,HM B(r)dr [ " B(r) MH,H M B(rir [ ‘1 B(r) MH,M B(r)dr

f "B(r)‘M;HlM,B(r)dr 1) :B(r)'M;HZM‘B(r)dr /. “B(r)‘M;HxM,B(r)dr ) :B(r)'M;MlB(r)dr
1 1 1 1

fo B(r) M H'M dB(r)
1 1 1 1

fo B(r) M H,M dB(r)
1 1 1 1

[ B M H,M dB(r)
1 1 1

f B(r) M M dB(r)

. 0

Before starting the spuriousness of the asymptotic result R.1), I should
give some explanation regarding the properties of the matrix F: the
elements of the main diagonal of F are all equal. Besides, the elements
of F along each diagonal line parallel to the principal diagonal are
equal. Thus, F is a Toeplitz.

Toeplitz matrices belong to the larger class of persymmetric matrices.
A square matrix B of order n is persymmetric if it symmetric about its

northeast-southwest diagonal, i.e., b, =b . for all iand j.

Moreover, from the properties of the matrices H,, k=1,2,3,4,it can be

shown that the matrix F is also symmetric as well as its inverse. The
equation (1) can be written in matrix form:

Y = Xa+e, 9)

yo Yy 1 Y. 2 y,g

where X = Y Yoo Vo Vo

yT—l yT—Z yT—3 yT—4
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We have also: @ —a = (X X) "' X¢e, where

PORTEEED DD DI DA
D D SVEED DI SD DD DI S
nyt—syH ZlTyt—Syt—z nyfz—3 nyt—:syH ’
PORTTED DD DR D D i

T

o s,
T

Do Y

We have also: %(d —a)= i(XTfZX)’I% By way of parts ¢), d) and e)

of the preceding lemma and by using the fact that H, =1, we can

state spuriously the result R.1). This can be explained by the
singularity of the matrix F. More clearly, in view of the result R.1), we

deduce that the matrices C,and M are singular. The product Hij is
of a simple form, since it usually yields another H, matrix. Then, the

product term M H H M, inherits the singularity from these factors. As

1

a result, F' becomes singular.

Now, if we write the Kunst’s F-type statistic as follows:

*

F =a&[(S*)"'X X] & where S*is the OLS estimator of the residual

Gy ooy Gy 0

variance in Eq.(1), we can also state erroneously the following result:
R'2) F: a6 d f'Filf

In cases where some of the frequencies do not admit unit roots, the
or also the HEGY F-type statistic F

b} . . *
kunst’s statistic F(11 1934 3

..... .8
diverge to plus infinity at rate T i.e. the Kunst test is consistent under
the alternative it is set up for; see Taylor (2005) and GLN (1994).
Consequently, the asymptotic result R.2) stating that F-statistic to be
0,(1) is in error.

The approach of Osborn and Rodrigues (2002) cannot be applied to
the Kunst test because its regressors oblige us to work in unstable
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modes. This is why Lai and Wei (1983) and Chan and Wei (1988) used
eigenvector transformations to isolate the stable and unstable modes.

I have generated the empirical quantiles of the Kunst test for the
processes (A.1)-(A.5) and associated with nominal levels 90%, 95% and
99%. The sample size considered is 4000 (1000 years) and the number
of replications is 20000. I have found that these empirical quantiles
tend to be infinite. These results are not exposed here but they are
available upon request. Consequently, it is possible to predict that in
100% of cases we reject the null hypothesis for the processes (A.1)-
(A.5) and for nominal levels of 5% and 1%, as shown by Table 1 which
reports the rejection frequencies for a sample size of 100 (25 years) and
a number of replications of 20000. Al simulations were done with the
software Matlab.

Table 1: Empirical rejection frequencies of Kunst test under
nonstationary alternatives

Kunst Test Processes
(A.0) (A1) (A.2) (A.3) (A4) (A.5)
Fz‘; a,,0
R 0.095 1 1 1 1 1
nom. size 5%
FaJ ey,

: 0.0158 1 1 1 1 1
nom. size 1%

Notes: Number of replication: 20000, sample size 4N = 100 observations, nom. size:
nominal size.

Also, we have augmented regression (1) corresponding to the Kunst
test by lagged values of dependent variable. Thus, this regression
becomes:

V4
Ay =ay,  +..+oy, ,+0y, +ZA4yH +¢, t=1..,T. (10)
i=1

In Table 2 below we report the power of the augmented Kunst test
against the non-stationary alternatives (A.1)- (A.5).
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Table 2: Empirical rejection frequencies of the Kunst augmented test
under nonstationary alternatives

Processes
(A.0) (A1) (A.2) (A.3) (A.4) (A.5)
nom.size
5%
p=2 0.0592 1 1 1 1 1
P=4 0.0549 1 1 1 1 0.9920
P=6 0.0522 1 1 0.9980 0.9976 0.9038
nom.size
1%
p=2 0.0140 1 1 1 1 0.9998
P=4 0.0141 1 1 0.9992 0.9991 0.9271

P=6 0.0121 0.9990 0.9990 0.97770 0.97460 0.6632

We see from the results in Table 2 that the perfect power is
maintained in all the alternatives (A.1)- (A.5) even if we increase the
number of lagged terms of dependent variable. At this level, a slight
exception to this general finding was detected for the alternative (A.5)
and for p = 4 or 6. Particularly, and for this alternative, the exception
is much clearer for p = 6 and the nominal level 1%. In fact, the test
power decreases and reaches a value around 66%.

4 CONCLUSIONS

A large literature has risen on testing for seasonal unit roots during the
last two decades. However, the majority of econometricians, treating
this topic, have focused on providing the limit theory of the tests for
unit roots at the zero, Nyquist and harmonic seasonal frequencies by
considering either an additional determinist component or a modified
assumption set concerning the error terms which appear in the
regression models associated with such tests. Seldom have studies
centered on the power of seasonal unit roots against non-stationary
alternatives. Ghysels et al. (1994) early set out this problem and, in a
simulation study, they guessed that the DHF test may not separate
unit roots at each frequency. Having enriched this analysis by a large
sample investigation, Taylor (2003) found that the DHF statistics did
not diverge to minus infinity when the DGP of the series is a
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conventional random walk. del Barrio Castro (2006, 2007) considered
an extended set of non-stationary alternatives and studied their
asymptotic effects on the DHF and HEGY statistics.

In this paper, I showed that resorting to the approach of Osborn and
Rodrigues (2002) can be problematic when the non-stationary
alternatives, as defined by del Castro Barrio (2007), are taken into
account. Appealing as this approach is, it conceives the DGP only as a
seasonal random walk. Consequently, it cannot be appropriately used,
under such alternatives, when the regressors are original variables and
do not satisfy the asymptotic orthogonality. Indubitably, such a
property simplifies the establishment of the asymptotic theory of the
statistics in question. Moreover, via a simulation study, I found that
the Kunst test maintains high power in cases where some of the
frequencies do not admit unit roots. In addition, these high-power
properties are preserved when I proceeded to augment the regression
model of the test with lagged dependent variables. This clearly shows
that Kunst’s statistics diverge in these situations.
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