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ABSTRACT 
 
Few authors have studied, either asymptotically or in finite samples, 
the size and power of seasonal unit root tests when the data generating 
process [DGP] is a non-stationary alternative aside from the seasonal 
random walk. In this respect, Ghysels, lee and Noh (1994) conducted a 
simulation study by considering the alternative of a non-seasonal 
random walk to analyze the size and power properties of some seasonal 
unit root tests. Analogously, Taylor (2005) completed this analysis by 
developing the limit theory of statistics of Dickey and Fuller Hasza 
[DHF] (1984) when the data are generated by a non-seasonal random 
walk. del Barrio Castro (2007) extended the set of  non-stationary 
alternatives and established, for each one, the asymptotic theory of the 
statistics subsumed in the HEGY procedure. In this paper, I show that 
establishing the limit theory of F-type statistics for seasonal unit roots 
can be debatable in such alternatives. The problem lies in the nature of 
the regressors that these overall F-type tests specify. 
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1 INTRODUCTION 

The stochastic nature of the seasonality seems to gain ground in 
empirical studies. Several aspects related to seasonal unit root tests 
were treated in the literature. In this respect, the power of these tests 
against non-stationary alternatives is an important issue that recently 
acquired some concern. To the best of our knowledge, Ghysels, Lee, 
and Noh [GLN] (1994) are the first authors who studied this problem. 
In fact, in a Monte Carlo study, they showed that against a non-
seasonal random walk, the power of the tests of Dickey, Hasza and 
Fuller (1984) lies well lower than that of the tests of Hylleberg, Engle, 
Granger and Yoo [HEGY] (1990). Ghysels et al. guessed that “the 
Dickey et al. test may not separate unit roots at each frequency” (p. 
432). The restriction behind the Dickey et al. procedure is that all the 
unit roots (conventional and seasonal roots) have a modulus of one. 
Thus, it is clear that the conventional random walk does not fulfil this 
requirement. However, Rodrigues and Osborn (1999) showed that if 
this restriction holds, the power of the tests of Dickey et al. would 
have a proper superiority in finite samples with regard to that of the 
tests of Hylleberg and al. (1990). In an interesting contribution, Taylor 
(2003) analysed the large sample behaviour of the seasonal unit root 
tests of Dickey et al. when the data generating process (DGP) is a 
non-seasonal random walk, i.e. when the series only admits a zero 
frequency unit root. In such case and as shown by Taylor (2003), all 
the Dickey et al. statistics have non-degenerate limiting distributions. 
These results theoretically explain the empirical findings of GLN. 
Furthermore, Taylor (2005) showed that asymptotically the statistics 
of the Dickey et al. augmented test will also do not diverge. In the 
same context, del Barrio Castro (2006) generalized the results of 
Taylor (2003) to a set of non-stationary alternatives which include the 
non seasonal random walk. He found also that the Dickey et al. 
statistics did not have standard limiting distributions and did not 
diverge. Based on the same methodology, del Barrio Castro (2007) 
established the limit theory of the statistic of Fisher and those of 
Student subsumed by the HEGY procedure. Accordingly, he 
theoretically derived the effect that can asymptotically have one unit 
root on the others at different frequencies. Following the terminology 
of Busetti and Taylor (2003), we have, in these situations, “unattended 
unit roots”. However, del Barrio Castro (2007), in his large sample 
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analysis, did not directly consider the effects of non-stationary 
alternatives on the overall F-type statistic of seasonal integration1 
which is complementally specified for the HEGY procedure by GLN 
(1994).  

The well-known Fisher tests of the overall seasonal integration null 
hypothesis are those of Kunst (1997) and Hylleberg et al. (1990). 
Although these two tests are asymptotically related, they have a main 
difference in the nature of the explanatory variables used in their basic 
regressions. Indeed, Kunst’s regressors are original variables; however, 
the HEGY procedure involves regressors that are obtained by non-
singular linear transformation of those used by Kunst. Consequently, 
the HEGY regressors show an ultimate property, to wit, the 
asymptotic orthogonality. 

In a recent paper, Osborn and Rodrigues (2002) developed an 
appealing and unifying approach for deriving asymptotic results 
regarding the statistics of the most commonly used seasonal unit root 
tests. The data generating process (DGP) considered by these authors 
is the seasonal random walk. This approach is based on the use of 
circulant matrices which could, in seasonal context, retrieve the limit 
theory of the involved statistics as well as conveniently traducing the 
dynamics of time series and its evolution across different seasons. In a 
similar vein, Haldrup, Montanes and Sanso (2005) used this approach 
to show the effects of outliers on the limit theory of seasonal unit root 
tests. 

However, most often economic time series are not simultaneously 
affected by all seasonal unit roots. This empirical finding is all the 
more consolidated since the practitioners jointly use the deterministic 
seasonality and seasonal unit root tests as advised by Hylleberg (1995). 
Therefore, it is interesting to consider non-stationary alternatives, 
aside from the seasonal random walk assumption, in the finite and 
large sample studies on the part of seasonal unit root tests. 

Here I focus on whether the overall F-type statistic limit theory can be 
directly and rigorously established when the observed series is 
generated from the non-stationary alternatives treated by del Barrio 
Castro (2006). I mean by the word “directly” that in establishing the 

                                                 
1In this paper, we adopt the seasonal integration definition of Ghysels and Osborn 
(2001, p. 43) 
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limit theory in question, we do not resort to transformations of the 
involved regressors. More specifically, I show that when the DGP is 
one of these non-stationary alternatives and the considered regressors 
do not satisfy the asymptotic orthogonality, the approach proposed by 
Osborn and Rodrigues (2002) doesn’t work. 

The paper proceeds as follows. In the following section, I give some 
preliminaries about the overall F-tests for seasonal unit roots. I expose 
the most famous ones, namely those of Hylleberg et al. (1990) and 
Kunst (1997). Next, I specify a possible set of the data generating 
processes (DGP) for observed quarterly series. The study can be 
extended to another data observation frequency, but I retain the 
quarterly case for illustrative purposes. Put differently, considering 
quarterly time series affords a clear analysis on account of the reduced 
number of involved unit roots. The third section discusses how 
specious asymptotic results, regarding F-type statistics for seasonal 
unit roots in their entirety, can be reached under non-stationary 
alternatives. This theoretical study is accompanied by a simulation 
exercise where I allow for possible augmentation with lagged terms of 
dependent variable in the regression models corresponding to the 
studied tests, in order to assess their performance against non-
stationary alternatives. In the last section, I conclude.  

2 OVERALL SEASONAL INTEGRATION TESTS 

2.1 The Kunst test 

The Kunst test for quarterly time series is based on the following 
regression 

4 1 1 3 3 4
... ,

t t t t t
y y y yα α δ ε

− − −
Δ = + + + +  1,..., ,t T=  (1) 

which is an F-type test of the form 

1 3

* ' ' '
ˆ 0 0ˆ ˆ,..., ,

ˆ ˆ ˆ ˆ ˆ ˆ( 4)( ) / ( ),F T
α α δ

ε ε ε ε ε ε= − −  (2) 

where 
0̂
ε  and 

1̂
ε  are vectors of residuals estimated under the null 

0 1 3
: ... 0H α α δ= = = =  and alternative hypotheses of the test. I 

assume without any loss of generality that al the initial values required 
by Eq. (1) are null. We can remark that Kunst did not divide the 
numerator of the statistic (2) by 4, the number of restrictions, as we 
did it to perform a conventional Fisher test. 
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2.2 The HEGY test 

The basic regression for the HEGY test, without any augmentation 
and with no deterministic terms, is: 

4 1 1 1 2 2 1 3 3 2 4 3 1
,

t t t t t t
y y y y yπ π π π ε

− − − −
Δ = + + + +  1,..., ,t T=  (3) 

where 

2 3
1
(1 ) ,

t t
y L L L y= + + +   

2 3
2

(1 ) ,
t t
y L L L y= − − + −  (4) 

2
3

(1 ) ,
t t
y L y=− −  
with L is the lag operator. 

GLN has extended the HEGY approach with a joint test statistic 
1234
F  

for the null hypothesis, 
0 1 2 3 4
: 0H π π π π= = = = , implying all unit 

roots in data observed at quarterly frequency. 
0
H is an overall 

hypothesis for seasonal integration SI (1) in accordance with the 
notation of Ghysels and Osborn (2001). 

Note that we have 

1 1 1

2 1 2

3 2 3

3 1 4

1 1 1 1

1 1 1 1

0 1 0 1

1 0 1 0

t t

t t

t t

t t

y y

y y

y y

y y

− −

− −

− −

− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (5) 

We can deduce from (5) that the regressors of the Kunst test are non-
singular linear transformations of those of the HEGY test. 
Consequently, the F-type statistics,

1234
F  and

1 3

*
ˆˆ ˆ,..., ,
/ 4F

α α δ
, will have the 

same limit theory. Given that the two statistics are asymptotically 
related, the analysis is confined to that of Kunst in the sequel. 

Hence, we can observe that there exist a little bit differences between 
the critical values of both statistics. In general, such critical values are 
tabulated supposing that the DGP of 

t
y  is:  

4
.

t t t
y y e

−
= +  (A.0) 
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In this paper, I assume that the DGP of 
t
y drawn from one of the 

following stochastic processes: 

1
,

t t t
y y e

−
= +  (A.1) 

1
,

t t t
y y e

−
= − +  (A.2) 

2
,

t t t
y y e

−
= +  (A.3) 

2
,

t t t
y y e

−
= − +  (A.4) 

and 

1 2 3
.

t t t t t
y y y y e

− − −
= − − − +  (A.5)  

By using the double subscript notation, we can define the following 
annual vectors: 

1 2 3 4
( , , , ) ',

n n n n n
Y y y y y=  
and  

1 2 3 4
( , , , ) ',

n n n n n
E e e e e=  
where we suppose that 1,...,n N=  and in the T observations there is 
N years, simply let 4 .T N=  To keep matters tractable, I suppose that 

'
0 10 20 30 40
( , , , ) ' (0, 0, 0, 0) .Y y y y y= =   

The error processes in the alternatives (A.1)-(A.5) follows a stationary 
AR(p)  

( ) ,
sn sn

L e vφ =  

where 
1

( ) 1
p

i
sn i

i

z e zφ ϕ
=

= −∑ and s=1,…,4.  

The roots of ( ) 0zφ =  all lie outside the unit circle 1.z =  As for the 

error sequence { }snv , it depicts an innovation process with constant 

conditional variance 2σ  (see Spanos, 2003, p. 443). Similarly to what 
has been conjectured by del Barrio Castro (2007) regarding to the 
error structure in the non-stationary alternatives described above, I 
suppose that the vector 

n
E has the following dynamics: 
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*

0

,
n j n

j

E V
∞

=

= Γ∑  

where 
1 2 3 4
( , , , ) ',

n n n n n
v v v v v=  and I define the sequence of 4 4×  matrices 

as: 

1*
0

2 1

3 2 1

1 0 0 0

1 0 0

1 0

1

γ
γ γ
γ γ γ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Γ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

4 4 1 4 2 4 3

4 1 4 4 1 4 2*
0

4 2 4 1 4 4 1

4 3 4 2 4 1 4

j j j j

j j j j

j j j j

j j j j

γ γ γ γ
γ γ γ γ
γ γ γ γ
γ γ γ γ

− − −

+ − −

+ + −

+ + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Γ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, for 1,2,....j = . 

with 

j

j
j zz ∑

∞

=

−=
1

1)( γγ
 

being the inverse of ( ).zφ  Finally, *(1)Γ  is defined as 

* *

0

(1) .
j

j

∞

=

Γ = Γ∑  

del Barrio Castro (2006) used the vector of moving average 
representation in order to express the alternatives (A.i), i =1,…5, in a 
vector of quarters representations where the observations of each year 
are stacked in the above defined vectors 

n
Y  et 

n
E , let 

0 1
(1 ) ( ) ,i i

n n
B Y B E− = Θ +Θ  1,2,...,5,i =  (6) 

where B is the annual backward operator. The 4 4×  matrices 
0
iΘ  and 

1
iΘ  (corresponding to the alternatives A.1-A.5) are defined as follows 

1
0

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Θ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 1
1

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Θ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 for (A.1), (7.1) 

2
0

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥−⎢ ⎥Θ = ⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

, 1
1

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

⎡ ⎤− −⎢ ⎥
⎢ ⎥−⎢ ⎥Θ = ⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 for (A.2), (7.2) 
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3
0

1 0 0 0

0 1 0 0

1 0 1 0

0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Θ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 3
1

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Θ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 for (A.3), (7.3) 

4
0

1 0 0 0

0 1 0 0

1 0 1 0

0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Θ = ⎢ ⎥−⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

, 4
1

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

⎡ ⎤−⎢ ⎥
⎢ ⎥−⎢ ⎥Θ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 for (A.4), (7.4) 

5
0

1 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥−⎢ ⎥Θ = ⎢ ⎥−⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

, 5
1

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥Θ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 for (A.5) (7.5) 

The following result was established by del Barrio Castro (2007): 

[ ]

1
( ),

rN d i
Y B r

Nσ
→  *( ) (1) ( ),

i i
B r C B r= Γ  

0 1
i i

i
C = Θ +Θ , 1,2,...,5,i =  (8) 

where the symbol “
d

→ ” denotes the convergence of probability 

measures, ( )
i
B r is a 4 1×  vector Brownian motion process with 

variance matrix 2 * * ' '(1) (1)
i i i

C CσΩ = Γ Γ  and ( )B r  is a vector Brownian 

motion with variance matrix 2
4
Iσ . The subscript i  corresponds to the 

alternative (A.i), i = 1,…, 5. 

Note that the rank of 
i
C , 1,...,5,i = is the number of (seasonal) unit 

roots implied by the process (A.i), i =1,…,5. In order to determine the 
number of cointegration relations between the quarters, corresponding 
to every process (A.i), i =1,…,5, we have to subtract from the 
periodicity of the quarterly data, i.e. 4, the rank of the matrix 

i
C , 

1,...,5i = . We can rewrite Eq. (8) more precisely by identifying the 
stochastic processes ( ), 1,2,..5,

i
B r i =  on the grounds that there is 

always cointegration among the quarters of the time series; see del 
Barrio Castro (2007, p.915). 
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3 LIMIT THEORY OF THE KUNST TEST UNDER 
NONSTATIONARY ALTERNATIVES 

I first introduce the following lemma which can be directly deduced 
from the preceding result of del Castro Barrio (2007) and lemma A.1 of 
Osborn and Rodrigues (2002). 

Lemma. Suppose that the DGP of 
t
y  in (1) is given by the alternatives 

(A.1)-(A.5) and suppose that the vector 
1 4
( ,..., ), ,
n n
e e n∀ satisfies the 

assumption 1 of Phillips (1986, p.313), we have under the null of the 
Kunst test as T → ∞  

a) 
1

2 ' 2 ' '

0
1

( ) ( ) ,
N

n n d i i
n

N YY M B r B r M drσ−

=

→∑ ∫ 1,2,...,5.i =  

b) 
1

1 ' 2 ' '
1 0

1

( ) ( ) ,
N

n n d i i
n

N Y M B r dB r Mε σ−
−

=

→∑ ∫ 1,2,...,5.i =  

c) 
2

1
2 2 ' '

0
1

( ) ( ) ,
16

T

t k d i i
t

T y B r M M B r dr
σ−

−
=

→∑ ∫ 1,...,4,k =  1,2,...,5.i =  

d) 
2

1
2 ' ' '

0
1

( ) ( ) ,
16

T

t k t j d i k j i
t

T y y B r M H H M B r dr
σ−

− −
=

→∑ ∫  ,k j≠ 1,2,...,5.i =  

e) 
2

1
1 ' ' '

0
1

( ) ( ),
4

T

t k t d i k i
t

T y B r M H M dB r
σ

ε−
−

=

→∑ ∫  1,..., 4,k =  1,2,...,5,i =  

where 
1 2 3 4
( , , , ) '

n n n n n
ε ε ε ε ε=  and *(1).

i i
M C= Γ  

The matrix ,
k
H  1,2,3,4,k = is a particular permutation matrix order 4 

which produces the following elementary operations: let a matrix K  
having 4 lines, the operation 

1
H K moves the last row of K  to the top 

row of 
1
H K  and the other rows moved down one place. More 

generally, 
i
H K shifts the final iths rows to the top of the matrix while 

the remaining rows correspondingly moved down. Note that 
4 4
H I=  

(see Golub and Van Loan, 1996, p. 109-112, for details). 

The preceding lemma is mathematically correct however its use, under 
certain circumstances, may not be valid as will be explained in the 
sequel. 
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Let denote by α̂  the OLS estimator of the vector '
1 2 3
( , , , )α α α α δ=

defined in the Eq. (1). When the DGP of 
t
y in (1) is given by one of 

the alternatives (A.1)-(A.5), we can achieve this nugatory asymptotic 
result by using the preceding lemma:  

R.1) 1ˆ( ) ,
4 d

T
F fα α −− → where 

1 1 1 1
' ' ' ' ' ' ' ' ' ' ' '

1 1 1 2 1 3 10 0 0 0
1 1 1 1

' ' ' ' ' ' ' ' ' ' ' '
2 1 2 2 2 3 20 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

... ... ... .

i i i i i i i i

i i i i i i i i

B r M H H M B r dr B r M H H M B r dr B r M H H M B r dr B r M H M B r dr

B r M H H M B r dr B r M H H M B r dr B r M H H M B r dr B r M H M B r dr
F =

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

1 1 1 1
' ' ' ' ' ' ' '

1 2 30 0 0 0

..

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
i i i i i i i i

B r M H M B r dr B r M H M B r dr B r M H M B r dr B r M M B r dr

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫

 

1
' ' '

10
1

' ' '
20

1
' ' '

30
1

' '

0

( ) ( )

( ) ( )

... 1,2,...,5.

( ) ( )

( ) ( )

i i

i i

i i

i i

B r M H M dB r

B r M H M dB r

f i

B r M H M dB r

B r M M dB r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ∀ =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∫
∫

∫
∫

 

Before starting the spuriousness of the asymptotic result R.1), I should 
give some explanation regarding the properties of the matrix F: the 
elements of the main diagonal of F are all equal. Besides, the elements 
of F along each diagonal line parallel to the principal diagonal are 
equal. Thus, F is a Toeplitz. 

Toeplitz matrices belong to the larger class of persymmetric matrices. 
A square matrix B of order n is persymmetric if it symmetric about its 
northeast-southwest diagonal, i.e., 

1, 1ij n j n i
b b − + − +=  for all i and .j  

Moreover, from the properties of the matrices ,
k
H  1,2,3,4,k = it can be 

shown that the matrix F is also symmetric as well as its inverse. The 
equation (1) can be written in matrix form: 

,Y Xα ε= +  (9) 

where 

0 1 2 3

1 0 1 2

1 2 3 4

... ... ... ...

T T T T

y y y y

y y y y
X

y y y y

− − −

− −

− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and 
1

...

T

ε
ε

ε

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 
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We have also: ' 1 'ˆ ( )X X Xα α ε−− = , where 

2
1 1 2 1 3 1 41 1 1 1

2
2 1 2 2 3 2 4' 1 1 1 1

2
3 1 3 2 3 3 41 1 1 1

2
4 1 4 2 4 3 41 1 1 1

T T T T

t t t t t t t
T T T T

t t t t t t t
T T T T

t t t t t t t
T T T T

t t t t t t t

y y y y y y y

y y y y y y y
X X

y y y y y y y

y y y y y y y

− − − − − − −

− − − − − − −

− − − − − − −

− − − − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑
∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

, and 

11

41

' ... .

T

t t

T

t t

y

X

y

ε
ε

ε

−

−
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We have also: 
' '

1

2

1
ˆ( ) ( )

4 4

T X X X

TT

ε
α α −− = . By way of parts c), d) and e) 

of the preceding lemma and by using the fact that 
4 4

,H I=  we can 
state spuriously the result R.1). This can be explained by the 
singularity of the matrix F. More clearly, in view of the result R.1), we 
deduce that the matrices 

i
C and 

i
M are singular. The product '

j k
H H is 

of a simple form, since it usually yields another 
k
H matrix. Then, the 

product term ' '
l j k l
M H H M  inherits the singularity from these factors. As 

a result, F becomes singular. 

Now, if we write the Kunst’s F-type statistic as follows: 

1 3

* ' 2 1 '
ˆˆ ˆ,..., ,
ˆ ˆ[( ) ] ,F S X X

α α δ
α α−= where 2S is the OLS estimator of the residual 

variance in Eq.(1), we can also state erroneously the following result:  

R.2) 
1 3

* ' 1
ˆˆ ˆ,..., , d

F f F f
α α δ

−→  

In cases where some of the frequencies do not admit unit roots, the 
kunst’s statistic 

1 3

*
ˆˆ ˆ,..., ,

F
α α δ

, or also the HEGY F-type statistic 
1234
F , 

diverge to plus infinity at rate T; i.e. the Kunst test is consistent under 
the alternative it is set up for; see Taylor (2005) and GLN (1994). 
Consequently, the asymptotic result R.2) stating that F-statistic to be 
(1)
p
O  is in error. 

The approach of Osborn and Rodrigues (2002) cannot be applied to 
the Kunst test because its regressors oblige us to work in unstable 
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modes. This is why Lai and Wei (1983) and Chan and Wei (1988) used 
eigenvector transformations to isolate the stable and unstable modes. 

I have generated the empirical quantiles of the Kunst test for the 
processes (A.1)-(A.5) and associated with nominal levels 90%, 95% and 
99%. The sample size considered is 4000 (1000 years) and the number 
of replications is 20000. I have found that these empirical quantiles 
tend to be infinite. These results are not exposed here but they are 
available upon request. Consequently, it is possible to predict that in 
100% of cases we reject the null hypothesis for the processes (A.1)-
(A.5) and for nominal levels of 5% and 1%, as shown by Table 1 which 
reports the rejection frequencies for a sample size of 100 (25 years) and 
a number of replications of 20000. Al simulations were done with the 
software Matlab. 

Table 1: Empirical rejection frequencies of Kunst test under 
nonstationary alternatives 

Kunst Test  Processes 

 (A.0) (A.1) (A.2) (A.3) (A.4) (A.5) 

1 3

*
ˆˆ ˆ,..., ,

F
α α δ

 

nom. size 5% 

 

0.095 

 

1 

 

1 

 

1 

 

1 

 

1 

1 3

*
ˆˆ ˆ,..., ,

F
α α δ

 

nom. size 1% 

 

0.0158 

 

1 

 

1 

 

1 

 

1 

 

1 

Notes: Number of replication: 20000, sample size 4N = 100 observations, nom. size: 
nominal size. 

Also, we have augmented regression (1) corresponding to the Kunst 
test by lagged values of dependent variable. Thus, this regression 
becomes: 

4 1 1 3 3 4 4
1

... ,
p

t t t t t i t
i

y y y y yα α δ ε
− − − −

=

Δ = + + + + Δ +∑  1,..., .t T=  (10) 

In Table 2 below we report the power of the augmented Kunst test 
against the non-stationary alternatives (A.1)- (A.5). 
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Table 2: Empirical rejection frequencies of the Kunst augmented test 
under nonstationary alternatives 

  Processes 

  (A.0) (A.1) (A.2) (A.3) (A.4) (A.5) 

nom.size 
5% 

       

 p=2 0.0592 1 1 1 1 1 

 P=4 0.0549 1 1 1 1 0.9920 

 P=6 0.0522 1 1 0.9980 0.9976 0.9038 

nom.size 
1% 

       

 p=2 0.0140 1 1 1 1 0.9998 

 P=4 0.0141 1 1 0.9992 0.9991 0.9271 

 P=6 0.0121 0.9990 0.9990 0.97770 0.97460 0.6632 

We see from the results in Table 2 that the perfect power is 
maintained in all the alternatives (A.1)- (A.5) even if we increase the 
number of lagged terms of dependent variable. At this level, a slight 
exception to this general finding was detected for the alternative (A.5) 
and for p = 4 or 6. Particularly, and for this alternative, the exception 
is much clearer for p = 6 and the nominal level 1%. In fact, the test 
power decreases and reaches a value around 66%. 

4 CONCLUSIONS 

A large literature has risen on testing for seasonal unit roots during the 
last two decades. However, the majority of econometricians, treating 
this topic, have focused on providing the limit theory of the tests for 
unit roots at the zero, Nyquist and harmonic seasonal frequencies by 
considering either an additional determinist component or a modified 
assumption set concerning the error terms which appear in the 
regression models associated with such tests. Seldom have studies 
centered on the power of seasonal unit roots against non-stationary 
alternatives. Ghysels et al. (1994) early set out this problem and, in a 
simulation study, they guessed that the DHF test may not separate 
unit roots at each frequency. Having enriched this analysis by a large 
sample investigation, Taylor (2003) found that the DHF statistics did 
not diverge to minus infinity when the DGP of the series is a 
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conventional random walk. del Barrio Castro (2006, 2007) considered 
an extended set of non-stationary alternatives and studied their 
asymptotic effects on the DHF and HEGY statistics. 

In this paper, I showed that resorting to the approach of Osborn and 
Rodrigues (2002) can be problematic when the non-stationary 
alternatives, as defined by del Castro Barrio (2007), are taken into 
account. Appealing as this approach is, it conceives the DGP only as a 
seasonal random walk. Consequently, it cannot be appropriately used, 
under such alternatives, when the regressors are original variables and 
do not satisfy the asymptotic orthogonality. Indubitably, such a 
property simplifies the establishment of the asymptotic theory of the 
statistics in question. Moreover, via a simulation study, I found that 
the Kunst test maintains high power in cases where some of the 
frequencies do not admit unit roots. In addition, these high-power 
properties are preserved when I proceeded to augment the regression 
model of the test with lagged dependent variables. This clearly shows 
that Kunst’s statistics diverge in these situations. 
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