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ABSTRACT 
 
This research states the stylised n players’ splitting problem as a 
mathematical programme, relying on definitions of the values of the 
game and problem stationarity to generate tractable reduced forms, 
and derives the known solutions after pertaining first-order conditions. 
Boundary constraints are introduced. Distinction between FOC’s of 
optimising behavior and equilibrium fitness is provided. Finally, the 
formal proof of the internal insufficiency of the usual approach to 
determine the equilibrium is advanced, and the imposing additional 
conditions — affecting cross multipliers — required for model solving 
forwarded. Two types of protocols were staged: alternate offers — 
Rubinstein’s like — and synchronised ones. 
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1 INTRODUCTION 

1.1 Background 

Rubinstein’s (1982) structure has become a major reference in game 
theory and wage bargaining literature, possessing in its most well-
known form the agreeable characteristic of generating — under perfect 
information, rational players with positive discount rates, and a 
realistic bargaining protocol — an immediate settlement and a unique 
equilibrium with no time loss, illustrating both the first-mover and 
patience advantages. Moreover, it provided, after Binmore, Rubinstein 
and Wolinsky (1986), a rationale for the cooperative solution implied 
by the widely accepted Nash (1950, 1953) maximand. Martins (2006) 
proposed generalisations of its infinite horizon solution to games 
involving more than two players. It is the purpose of this research to 
suggest the pertaining solutions as stemming from equilibrium of first-
order conditions of conventional (quasi-)static optimisation 
programmes. 

In all scenarios, at stake is the split of an infinite flow of benefits, 
periodically available at subsequent, equally distant, discrete points in 
time. For simplicity, it is assumed that only stationary divisions of the 
cake are contractually acceptable, and enforceable, once agreed upon, 
ad infinitum — a context akin to wage bargaining, but also realistic for 
other settings, namely rental - tenancy and leasing — agreements, and 
barter of capital or durable goods. Each player makes a proposition on 
the division of the cake among all the players and only one proposal is 
heard each period; if refused, each agent enjoys in the period an 
exogenous alternative specific to the opponent making offers, and the 
bargaining re-initiates — continues - next period. 

Firstly, we advance alternate offers protocols: at a player’s turn to 
“make a move”, he can chose not to make any, enjoying a pay-off 
different from the one he gets when refusing an offer, and wait for next 
period’s decision of the opponent concerning the same choice. Only the 
player that is going to make the immediate offer — i.e., the first player 
at each point in time - is known, and each player except the one that 
is making the offer can end up making one with equal probability next 
period. 

We allow the players to decide whether to negotiate or not, and also to 
play mixed (i.e., random) strategies. These are known to exist for 
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familiar bargaining games, even if not necessarily called for to assure 
equilibrium. 

Simultaneous bargaining has been studied in the literature to obviate 
the dependence of Rubinstein’s results on the order and timing of 
offers. Usually, it is staged in a sequential set-up where time is 
assumed to be continuous and minimum delays between offers to exist 
- see Perry and Reny (1993) and Sákovics (1993). Instead, we keep the 
discrete time and forward the notion of “matching” or synchronous 
equilibrium, defined relying on each player using a mixed 
(probabilistic) strategy conditional on (and statistically independent 
of) the other player’s action — as in Martins (2004 and 2006). 

The individuals’ problems, even if dynamic in nature, exhibit an 
obvious stationarity: invariably, only a fixed number of alternative 
situations are (recurrently) possible at any point in time during the 
game (or while the game does not finish). This implies the existence of 
a static mathematical representation of the equilibrium - adjusted to 
account for the proponent’s rotation in the case of alternate offers. 
Individuals maximise the value of the game at each point in time, 
subject to — under a Nash perspective — the decisions that 
were/are/will be taken by opponents — and by himself with alternate 
offers; equilibrium derives from mutual agreement. Game theory does 
not usually resort to Lagrangean methods — Khun-Tucker conditions - 
and equilibrating constraints to generate solutions; we therefore inquire 
why, and if — in the reduced problems — some qualification of the usual 
conditions can generate the solutions proposed in the literature. 

The exposition proceeds as follows: notation is forwarded in section 1 
and implications of solution stationarity for the dynamic programmes 
deducted in section 2. Alternate offers are staged in section 3: starting 
by the players’ problems, then deriving FOC and finally justifying the 
Nash equilibrium. In section 4, following the same steps, properties of 
simultaneous, yet sequential, equilibria are inspected. The exposition 
ends with some concluding remarks. 

1.2 Notation2 

A “pie” of fixed size, normalised to 1, is made available to the n 
individuals every period; each player has per period utility function — a 
discrete, well-behaved, “felicity” function - ui(z), with z denoting the 

                                                 
2 We mainly reproduce Martins’ (2006) notation. 
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share obtained by i, which he discounts at factor δi — maximising 

accumulated discounted felicity. Unlike for other parameters, a 

superscript k on δi, i.e., δi
k, denotes the k-th power (of δi). 

Each player is responsible for a proposition of the division of the cake, 

xj = (x1
j, x2

j,…, xi
j,…, xn

j) where xi
j is the share of player i proposed 

by player j and therefore: 

(1.1) 
=
∑
n

j
i

i 1
x  = 1, j = 1, 2,…, n 

Of course, protocols differ according to the allocation of j’s turn to 
make a proposition.  

Each player holds “veto” rights over an agreement — ruling out benefits 
from coalition-seeking. A (therefore unanimous) agreement on the 
share of the pie accruing to each player is binding for eternity:

3
 if a 

settlement is reached about the split of the pie for a particular period, 
the same split will hold forever.

4
  

Also, when an individual, j, makes an offer — proposal —, either 
everybody accepts it and the split is settled, with player i, i = 1,2,…,n, 
getting accumulated discounted felicity from his perpetual share: 

(1.2)  
δ−

j
i i

i

u (x )
1

  

Or it is rejected — someone rejects it; in this case, the current pie is 

lost and di
j is the periodic felicity accruing to player i — di

j may be 

ui(0), or a better alternative exogenously available to him after 

rejecting j’s offer. si
j - i≠j - is the probability with which player i 

rejects j’s offer. 

                                                 
3 See Manzini (1998), for a survey of similar structures and results, including finite 
horizon games. Also, Busch and Wen (1995), Muthoo (1995) and Muthoo (1999). Yet, 
these contracts can sometimes be converted — see Martins (2004) — into a single “pie” 
division one. 
4 This condition/assumption restricts the relevant strategies to the players to be 
stationary in the long-run.  
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di
i, the periodic alternative accruing to i if his offer is rejected, is 

always assumed a low-value option, and enjoys a different status than 

di
j, j≠i. 

After a rejection, the “haggling” then reinitiates next period with the 
player making the offer being determined by the game protocol. 

ri is the probability with which player i makes an offer when he is the 

one so appointed. Pure strategies with respect to it arise when players 
decide ri = 1. We assume a player gets di in the period if he does not 

make an offer, and that everyone else, j≠i, simultaneously gets dj — 

player i gets periodic felicity di if there is no offer exchange in the 

period. It may differ from the di
j’s for j≠i, and from di

i. Of course, for 

games in pure strategies, di is a bound, but it does not influence (fully) 

interior solutions. For mixed strategies to emerge, di may not coincide 

with the periodic alternative available for player i outside the game 
(the latter may then have to be much lower for the solutions advanced 
in the text to hold). 

With alternate offers, each period, one and only player is exogenously 
assigned the right to make (or not, but then time elapses without the 

game ending) the periodic offer. Vi
j is then going to denote the value 

of the game for player i at the point at which j is supposed to make an 
offer.  

With simultaneous offers, Vi is the value of the game for player i at 

the beginning of the game, as at any point in time while the game is 
running — has not finished in an infinite term settlement. 

2 DYNAMIC OPTIMISATION UNDER STATIONARITY 

Individuals’ problems are dynamic programming structures. We have 
no state variables, yet, decisions in one period affect others. Consider a 
simple (single-person, infinite horizon) problem such that one must 

decide xi
t, t = 1,2,…, which affects directly a function that i maximises 

at time t, Vi
t = gi(xi

t, Vi
t+1*), knowing that Vi

t+1* obeys Vi
t+1 = 
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gi(xi
t+1, Vi

t+2*) and will be maximised at time t+1 according to the 

same principles. At (any) time t, i solves: 

(2.1) Vi
t* = 

+ +

+ +

t t 1 t 2
i i i
t t 1 t 2
i i i

V ,V ,V ,... ;
x ,x ,x , ... ;

Max  Vi
t  

(2.2) s.t.: Vi
t+k = gi(xi

t+k, Vi
t+k+1), k = 0,1,2… 

and Vi
t+k = Vi

t+k*, k = 1,2… 

 xi
t+k = xi

t+k*, k = 1,2… 

i.e., knowing that Vi
t+k and xi

t+k will be consistent with an optimal 

choice in those later periods. Given the stationarity of the problem, 

Vi
t+k* = Vi* and xi

t+k = xi* - whatever optimal at time t, will also 

be it at t+k and vice-versa -, which can therefore be replaced, 
simplifying the structure to: 

(2.3)  
i iV ;x

Max  Vi  

(2.4) s.t.: Vi = gi(xi, Vi)  

We will resort to the argument to suggest simplifying maximands in 
both type of protocols. For synchronised offers, it will be sufficient to 
generate a consistent game between n players — whose problems 
interact, but where recurrence of optimal decisions is expected; with 
alternate offers, a further generalisation — but in the same spirit —, 
isolating the n possible stationary states for each player, provides 
mathematical structures also easier to deal with. 

3 ALTERNATE OFFERS 

3.1 The Player’s Problem 

A player can either be appointed to make an offer in each period, or 
not. If he is and negotiations break-down, another of the n-1 players 
will take that role in the following round. 

If i is making the offer, he will solve the problem: 
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(3.1)  

− +

1 i n
1 1 1
1 i n
i i i
1 i n
n n n

i i i
i 1 i n
1 i 1 i 1 n
i i i i

V ,...,V ,...,V ;...;
V ,...,V ,...,V ;...;
V ,...,V ,...,V ;
r ; x ,...,x ,...,x ;
s ,...,s ,s ,...,s

Max  Vi
i, s.t.:  

(3.2)Vl
m = rm [

=
≠

∏
n

m
k

k 1
k m

s  
δ−

m
l l

l

u (x )
1

 + (1 - 
=
≠

∏
n

m
k

k 1
k m

s ) (dl
m + 

δ
−
l

n 1
 

=
≠

∑
n

k
l

k 1
k m

V )] 

+ (1 - rm) (dl + 
δ
−
l

n 1
 

=
≠

∑
n

k
l

k 1
k m

V ), l,m = 1,2,...,n 

 
=
∑
n

i
l

l 1
x  = 1  

 xl
i ≥ 0, l = 1,2,...,n;  

 0 ≤ ri ≤ 1; 0 ≤ si
m ≤  1, m≠i, m = 1,2,...,n 

 Given rm, m≠i, m = 1,2,…,n;  

 xl
m, m≠i, l,m = 1,2,…,n;  

 sl
m, l≠i,m, l,m = 1,2,…,n. 

If player j is the one making a proposition, i solves: 

(3.3)  

− +

1 i n
1 1 1
1 i n
i i i
1 i n
n n n

i i i
i 1 i n
1 i 1 i 1 n
i i i i

V ,...,V ,...,V ;...;
V ,...,V ,...,V ;...;
V ,...,V ,...,V ;
r ; x ,...,x ,...,x ;
s ,...,s ,s ,...,s

Max  Vi
j  

and he is subject to the same conditions. 

Given that the two positions intertwine, the same controls — and 
constraints — are present. And each player i solves n problems: 

maximising Vi
j, for each j = 1,2,...,n. 

The fact that all the Vl
m’s appear as controls is instrumental — they 

show as controls but are constrained by their definitions, known to the 
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players, stated in (3.2). On the one hand, the n equations defining 

Vi
m, m = 1,2,…,n, would allow a unique solution for Vi

j = g(), where 

g has arguments other than the Vi
m’s — analogously to form (2.4). As 

now the own decisions affect other players, Vl
m’s, l≠i must also be 

specified.  

Independent optimisation, with simultaneous decision of the same 
controls, is justified by a simple analog to the envelope theorem: we 

have that each Vi
j depends on control zl

i and on the optimal Vi
k’s, 

k≠j, k =1,2,…,n (as we will see, Vr
m for r≠i will not affect directly 

Vi
j). Then, when deciding at the point where an offer from j is being 

analyzed, i is maximising the present value of the game, knowing that 
he will also optimise at later dates; he will program the (any at his 

disposal) control zl
i in such a way that 

j
i
i
l

dV
dz

 = 
∂
∂

j
i
i
l

V
z

 + 
=
≠

∑
n

k 1
k j

∂
∂

j
i
k
i

V
V

 

k
i
i
l

dV
dz

 = 0. Of course, at time k, 
k
i
i
l

dV
dz

 = 0 — at the time k is “dealing”, l 

is seen as posterior; but then, 
∂
∂

j
i
i
l

V
z

 (as 
∂
∂

k
i
i
l

V
z

) must be set to zero. (In 

general, constrained maximisation will also obey this condition because 

in an optimal solution 
j
i
i
l

dL
dz

 = 
j
i
i
l

dV
dz

, where Li
j denotes the appropriate 

Lagrangean of the problem associated directly to Vi
j). This implies 

that we could have stated the two problem controls as the 

contemporaneous ones only, i.e., 
1 i n
1 1 1
1 i n
i i i
1 i n
n n n

i i i
i 1 i n

V ,...,V ,...,V ; ... ;
V ,...,V ,...,V ; ... ;
V ,...,V ,...,V ;
r ; x ,...,x ,...,x

Max Vi
i and 

1 i n
1 1 1
1 i n
i i i
1 i n
n n n

j
i

V ,...,V ,...,V ; ... ;
V ,...,V ,...,V ; ... ;
V ,...,V ,...,V ;

s

Max

Vi
j for j≠i — but provided the resulting system would be sufficient for 

determination. 

3.2 First-Order Conditions 
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Each player’s responses — strategies — are going to be consistent — i.e., 
they will be formed after the compatibilisation of FOC of each of his n 
optimisation programs. 

For each problem j, player i is going to face the Lagrangean: 

(3.4) 

μ μ μ
μ μ μ
μ

− +

1 i n
1 1 1
1 i n
i i i
1 i n
n n n

i i i
i 1 i n
1 i 1 i 1 n
i i i i

j j j1 i n
1 1 1i i i

j j j1 i n
i i ii i i
1
n i

V ,...,V ,...,V ; ... ;
V ,...,V ,...,V ; ... ;
V ,...,V ,...,V ;
r ; x ,...,x ,...,x ;
s ,...,s ,s ,...,s ;
( ) ,...,( ) ,...,( ) ; ... ;
( ) ,...,( ) ,...,( ) ; ... ;
( )

Max

μ μ
λ
η η η η η− +

j j ji n
n ni i

j
i
j j j j j1 i 1 i 1 n
i i i i i

,...,( ) ,...,( ) ;
( ) ;
( ) ,...,( ) ,( ) ...,( ) ; ( )

 Li
j = Vi

j + 
=

∑
n

m 1 =
∑
n

l 1
 (μl

m)i
j {- Vl

m + rm 

[
=
≠

∏
n

m
k

k 1
k m

s  
δ−

m
l l

l

u (x )
1

 + (1 - 
=
≠

∏
n

m
k

k 1
k m

s ) (dl
m + 

δ
−
l

n 1
 

=
≠

∑
n

k
l

k 1
k m

V )] + (1 - rm) (dl 

+ 
δ
−
l

n 1
 

=
≠

∑
n

k
l

k 1
k m

V )} + (λ)i
j (1 - 

=
∑
n

l 1
xl

i) + (η)i
j (1 - ri) + 

=
≠

∑
n

m 1
m i

(ηm)i
j 

(1 - si
m) 

 xl
i ≥ 0, l = 1,2,...,n;  

 (λ)i
j ≥ 0; (μl

m)i
j ≥ 0, l,m = 1,2,...,n; 

 (η)i
j (1 - ri) = 0, ri ≥ 0, (η)i

j ≥ 0; 

 (ηm)i
j (1 - si

m) = 0, si
m ≥ 0, (ηm)i

j ≥ 0, m≠i, m = 1,2,...,n 

The optimand is linear in the controls. For a maximum, equality as 
inequality constraint devices — for application of Khun-Tucker 
conditions — are added to the constraints and embedded in the 
Lagrangean, constructed to exhibit non-negative multipliers — to obey 
SOC, that with a linear maximand, are satisfied with convexity of the 
constraints.

5
  

                                                 
5 Concavity of the definitions of Vl

m in the arguments — that requires concavity of 
felicity functions in pure strategies, reason why in the Lagrangean their symmetric is 
in fact introduced: (if we replaced the definition of Vi

j in the maximand, it should be 
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Then, for solutions with positive values of xl
i, si

j and ri we have:
 6
 

(3.5)  
∂
∂

j
i
j
i

L
V

 = 1 - (μi
j)i

j +
=
≠

∑
n

m 1
m j

 (μi
m)i

j (1 - rm
=
≠

∏
n

m
k

k 1
k m

s ) 
δ
−
i

n 1
 = 0 

(3.6)  
∂
∂

j
i
s
r

L
V

 = - (μr
s)i

j +
=
≠

∑
n

m 1
m s

(μr
m)i

j (1 - rm
=
≠

∏
n

m
k

k 1
k m

s ) 
δ
−
r

n 1
 = 0, r≠i or 

s≠j, r,s = 1,2,...,n 

(3.7)  
∂
∂

j
i
i
r

L
x

 = (μr
i)i

j ri 
=
≠

∏
n

i
k

k 1
k i

s  
δ−

i
r r

r

u '(x )
1

 - (λ)i
j = 0, r = 1,2,…,n 

(3.8)  
∂
∂

j
i
s
i

L
s

 = 
=
≠

∑
n

m 1
m s

=
∑
n

l 1
 (μl

m)i
j {rm [

=
≠

∏
n

m
k

k 1
k m

s  
δ−

m
l l

l

u (x )
1

 - 
=
≠

∏
n

m
k

k 1
k m

s  (dl
m + 

δ
−
l

n 1
 

=
≠

∑
n

k
l

k 1
k m

V )]} / si
s - (ηs)i

j = 0, s≠i, s = 1,2,…,n 

(3.9) 
∂
∂

j
i

i

L
r

 = 
=
∑
n

l 1
 (μl

i)i
j {[

=
≠

∏
n

i
k

k 1
k i

s  
δ−

i
l l

l

u (x )
1

 + (1 - 
=
≠

∏
n

i
k

k 1
k i

s ) (dl
i + 

δ
−
l

n 1
 

=
≠

∑
n

k
l

k 1
k i

V )] - (dl + 
δ
−
l

n 1
 

=
≠

∑
n

k
l

k 1
k i

V )} - (η)i
j = 0  

(3.10) 
μ
∂

∂

j
i

jm
l i

L
( )

 = 0, l,m = 1,2,...,n 

(3.11) 
λ

∂

∂

j
i
j
i

L

( )
 = 0  

                                                                                                                     
concave, and all the constraints of ≤ , including that of Vi

j if it were not an equality, 
convex, by Khun-Tucker sufficient second-order conditions.) Inequality constraints are 
linear and specified accordingly. SOC should hold for FOC to be valid for a maximum. 
6 We will concentrate on solutions with spontaneously positive values for these 
controls. 
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Looking at (3.5) and (3.6) separately, we observe that they form a 

system of nxn linear equations in the nxn (μl
m)i

j’s, l,m = 1,2,….,n, and 

that (μl
m)i

j = 0 for l≠i would solve it. We can write the two equations 

as: 

 0 = 1 - (μi
j)i

j + 
=

∑
n

m 1
 (μi

m)i
j (1 - rm

=
≠

∏
n

m
k

k 1
k m

s ) 
δ
−
i

n 1
 - (μi

j)i
j (1 - rj

=
≠

∏
n

j
k

k 1
k j

s ) 
δ
−
i

n 1
, or 

(3.12) (μi
j)i

j [1 + (1 - rj
=
≠

∏
n

j
k

k 1
k j

s ) 
δ
−
i

n 1
] = 1 + 

=
∑
n

m 1
 (μi

m)i
j (1 - rm

=
≠

∏
n

m
k

k 1
k m

s ) 
δ
−
i

n 1
, and 

0 = -(μr
s)i

j + 
=

∑
n

m 1
(μr

m)i
j (1 - rm

=
≠

∏
n

m
k

k 1
k m

s ) 
δ
−
r

n 1
 - (μr

s)i
j (1 — rs

=
≠

∏
n

s
k

k 1
k s

s ) 

δ
−
r

n 1
, r≠i or s≠j, r,s = 1,2,...,n, or 

(3.13) (μr
s)i

j [1 + (1 — rs
=
≠

∏
n

s
k

k 1
k s

s ) 
δ
−
r

n 1
] = 

=
∑
n

m 1
(μr

m)i
j (1 - rm

=
≠

∏
n

m
k

k 1
k m

s ) 

δ
−
r

n 1
, r≠i or s≠j, r,s = 1,2,...,n 

As the second equation holds for r=i if s≠j: 

(3.14) (μi
s)i

j [1 + (1 — rs
=
≠

∏
n

s
k

k 1
k s

s ) 
δ
−
i

n 1
] = 

=
∑
n

m 1
(μi

m)i
j (1 - rm

=
≠

∏
n

m
k

k 1
k m

s ) 

δ
−
i

n 1
 s≠j, s = 1,2,...,n 

Then, from (3.12): 
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(3.15) (μi
j)i

j [1 + (1 - rj
=
≠

∏
n

j
k

k 1
k j

s ) 
δ
−
i

n 1
] — 1 = (μi

s)i
j [1 + (1 — rs

=
≠

∏
n

s
k

k 1
k s

s ) 

δ
−
i

n 1
] s≠j, s = 1,2,...,n 

The right hand-side is constant for all s. Replacing then (μi
s)i

j, s≠j, - 

after (3.15) - in (3.5): 

(3.16)  1 = (μi
j)i

j - 
=
≠

∑
n

m 1
m j

 (μi
m)i

j (1 - rm
=
≠

∏
n

m
k

k 1
k m

s ) 
δ
−
i

n 1
 = (μi

j)i
j - - 

{(μi
j)i

j [1 + (1 - rj
=
≠

∏
n

j
k

k 1
k j

s ) 
δ
−
i

n 1
] — 1} 

=
≠

∑
n

m 1
m j

 (1 - rm
=
≠

∏
n

m
k

k 1
k m

s ) 
δ
−
i

n 1
 / [1 

+ (1 — rm
=
≠

∏
n

m
k

k 1
k m

s ) 
δ
−
i

n 1
], or 

(3.17)  (μi
j)i

j = {1 - 
=
≠

∑
n

m 1
m j

(1 - rm
=
≠

∏
n

m
k

k 1
k m

s ) 
δ
−
i

n 1
 / [1 + (1 — rm

=
≠

∏
n

m
k

k 1
k m

s

) 
δ
−
i

n 1
]} / {1 - [1 + (1 - rj

=
≠

∏
n

j
k

k 1
k j

s ) 
δ
−
i

n 1
]

=
≠

∑
n

m 1
m j

(1 - rm
=
≠

∏
n

m
k

k 1
k m

s ) 
δ
−
i

n 1
 / 

[1 + (1 — rm
=
≠

∏
n

m
k

k 1
k m

s ) 
δ
−
i

n 1
]}  

(μi
s)i

j for s≠j can then be inferred from (3.15). 

For any r≠i, from (3.13) we deduct that: 

(3.18) (μr
s)i

j [1 + (1 — rs
=
≠

∏
n

s
k

k 1
k s

s ) 
δ
−
r

n 1
] = (μr

m)i
j [1 + (1 — rm

=
≠

∏
n

m
k

k 1
k m

s ) 

δ
−
r

n 1
]  

Replacing in (3.6): 
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(3.19)   (μr
s)i

j = 
=
≠

∑
n

m 1
m s

(μr
m)i

j (1 - rm
=
≠

∏
n

m
k

k 1
k m

s ) 
δ
−
r

n 1
 = (μr

s)i
j [1 + (1 

— rs
=
≠

∏
n

s
k

k 1
k s

s ) 
δ
−
r

n 1
] 

=
≠

∑
n

m 1
m s

(μr
m)i

j (1 - rm
=
≠

∏
n

m
k

k 1
k m

s ) 
δ
−
r

n 1
 / [1 + (1 — rm

=
≠

∏
n

m
k

k 1
k m

s ) 
δ
−
r

n 1
], r≠i, r,s = 1,2,...,n 

Then, it solves for: 

(3.20) (μr
s)i

j = 0, for r≠i, r,s = 1,2,…,n 

This implies that only the constraints relative to Vi
s, s = 1,2,...,n, are 

relevant for an optimisation problem of individual i — even though the 
others remain in the — equilibrium - background.  

For interior solutions of si
j and ri - 0 < si

j, ri < 1 -, the system would 

be completed with (ηm)i
j = 0, m≠i, m = 1,2,...,n, and (η)i

j = 0. Due to 

(3.20), (3.7) — for interior solutions of xr
i for r≠i - implies (λ)i

j = 0; but 

then ri 
=
≠

∏
n

i
k

k 1
k i

s  
δ−

i
i i

i

u '(x )
1

 = 0. We conclude that — if ui’(xi
i) cannot be 

zero in the relevant range for xi
i — that ri 

=
≠

∏
n

i
k

k 1
k i

s  = 0. For an interior 

solution for xi
i (and some other xi

j), ri or sk
i for at least one of the 

other players must be zero — the conditions would be incompatible 

with interior solutions, or even sk
i = 1, for other players. 

More interesting are the cases for which si
j = 1, j≠i, j = 1,2,...,n, and ri 

= 1, corresponding to pure strategies on such variables. Then: 

(3.21)  
∂
∂

j
i
j
i

L
V

 = 1 - (μi
j)i

j = 0 or (μi
j)i

j = 1 
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(3.22)  
∂
∂

j
i
s
r

L
V

 = - (μr
s)i

j = 0, or (μr
s)i

j = 0 r≠i or s≠j, r,s = 1,2,...,n 

(3.23)  
∂
∂

j
i
s
i

L
s

 = 
=
≠

∑
n

m 1
m s

=
∑
n

l 1
 (μl

m)i
j [

δ−

m
l l

l

u (x )
1

 - (dl
m + 

δ
−
l

n 1
 

=
≠

∑
n

k
l

k 1
k m

V )] - 

(ηs)i
j = 0, s≠i, s = 1,2,…,n 

(3.24) 
∂
∂

j
i

i

L
r

 = 
=
∑
n

l 1
 (μl

i)i
j [

δ−

i
l l

l

u (x )
1

 - (dl + 
δ
−
l

n 1
 

=
≠

∑
n

k
l

k 1
k i

V )] - (η)i
j = 0  

(3.25) Vl
m = 

δ−

m
m l

m

u (x )
1

, l,m = 1,2,...,n  

(3.7) would hold, but with no added insights. We now have that the 

multipliers take a sort of canonical form, with (μi
j)i

j taking the value 

1, and all others 0. 

(3.21) and (3.22), from 
∂
∂

j
i
s
i

L
s

 = 0, imply: 

(3.26)  (ηj)i
j = 0, and 

(3.27) 
δ−

j
i i

i

u (x )
1

 - (di
j + 

δ
−
i

n 1
 

=
≠

∑
n

k
i

k 1
k j

V ) = (ηs)i
j s≠i,j, s = 1,2,…,n 

From 
∂
∂

j
i

i

L
r

 = 0: 

(3.28) (η)i
j = 0 if i≠j and  

(3.29) 
δ−

i
i i

i

u (x )
1

 - (di + 
δ
−
i

n 1
 

=
≠

∑
n

k
i

k 1
k i

V ) = (η)i
i  

The system applying to round j and player i — for given values of 
opponents’ strategies and his own at other rounds than j - is 
indeterminate. We claimed, that only contemporaneous (effective, i.e., 
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other than those relative to the Vl
m’s) control conditions are 

restrictive — condition (3.27) should therefore be superfluous; in fact, 

its addition just adds new unknowns - (ηs)i
j - and does not help (at 

this point) in determination. 

Mixed strategies with respect to ri, but pure ones with respect to si
j 

(with acceptance) si
j = 1, j≠i, j = 1,2,...,n, would add to (3.5) to 

(3.11), (η)i
j = 0: 

(3.30)  
∂
∂

j
i
j
i

L
V

 = 1 - (μi
j)i

j +
=
≠

∑
n

m 1
m j

 (μi
m)i

j (1 - rm) 
δ
−
i

n 1
 = 0 = 1 - 

(μi
j)i

j + 
=

∑
n

m 1
 (μi

m)i
j (1 - rm) 

δ
−
i

n 1
 - (μi

j)i
j (1 - ri) 

δ
−
i

n 1
  

(3.31)  
∂
∂

j
i
s
r

L
V

 = - (μr
s)i

j + 
=
≠

∑
n

m 1
m s

(μr
m)i

j (1 - rm) 
δ
−
r

n 1
 = 0 =- (μr

s)i
j 

+ 
=

∑
n

m 1
(μr

m)i
j (1 - rm) 

δ
−
r

n 1
 - (μr

s)i
j (1 - rr) 

δ
−
r

n 1
, r≠i or s≠j, r,s = 

1,2,...,n  

(3.32) 
∂
∂

j
i
s
i

L
s

 = 
=
≠

∑
n

m 1
m s

=
∑
n

l 1
 (μl

m)i
j rm [

δ−

m
l l

l

u (x )
1

 - (dl
m + 

δ
−
l

n 1
 

=
≠

∑
n

k
l

k 1
k m

V )] - 

(ηs)i
j = 0, s≠i, s = 1,2,…,n 

(3.33) 
∂
∂

j
i

i

L
r

 = 
=
∑
n

l 1
 (μl

i)i
j [

δ−

i
l l

l

u (x )
1

 - (dl + 
δ
−
l

n 1
 

=
≠

∑
n

k
l

k 1
k i

V )] = 0  

(3.34) Vl
m = rm 

δ−

m
m l

m

u (x )
1

 + (1 - rm) (dl + 
δ
−
l

n 1
 

=
≠

∑
n

k
l

k 1
k m

V ), l,m = 

1,2,...,n 
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(3.30) and (3.31) imply, at given rm’s and δr’s, a system of n equations 

and n unknowns, the (μl
m)i

j, l,m = 1,2,…,n. It solves — using (3.17), 

(3.15) and (3.20) - for: 

(3.35)  (μi
j)i

j = {1 - 
=
≠

∑
n

m 1
m j

(1 - rm) 
δ
−
i

n 1
 / [1 + (1 — rm) 

δ
−
i

n 1
]} / {1 

— [1 + (1 - rj) 
δ
−
i

n 1
]

=
≠

∑
n

m 1
m j

(1 - rm) 
δ
−
i

n 1
 / [1 + (1 — rm) 

δ
−
i

n 1
]}  

(3.36) (μi
m)i

j = ([1 + (1 - rj) 
δ
−
i

n 1
] {1 - 

=
≠

∑
n

m 1
m j

(1 - rm) 
δ
−
i

n 1
 / [1 + (1 

— rm) 
δ
−
i

n 1
]} / {1 - [1 + (1 - rj) 

δ
−
i

n 1
]

=
≠

∑
n

m 1
m j

(1 - rm) 
δ
−
i

n 1
 / [1 + (1 — 

rm) 
δ
−
i

n 1
]} - 1) / [1 + (1 — rm) 

δ
−
i

n 1
], m≠j, m = 1,2,…,n, 

(3.37) (μl
m)i

j = 0, l≠i, l,m = 1,2,…,n. 

Then, (3.32), from 
∂
∂

j
i
s
i

L
s

 = 0, implies: 

(3.38) 
=
≠

∑
n

m 1
m s

(μi
m)i

j rm [
δ−

m
i i

i

u (x )
1

 - (di
m + 

δ
−
i

n 1
 

=
≠

∑
n

k
i

k 1
k m

V )] = (ηs)i
j, s≠i, s 

= 1,2,…,n 

where (3.35) and (3.36) could be replaced.  

(3.33) reverts to: 

(3.39) 
δ−

i
i i

i

u (x )
1

 = di + 
δ
−
i

n 1
 

=
≠

∑
n

k
i

k 1
k i

V   

and (3.34) holds. 

(3.39), replacing in the definition of Vi
i also requires: 
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(3.40)  Vi
i = 

δ−

i
i i

i

u (x )
1

  

3.3 Nash Equilibrium 

A Nash equilibrium will involve the coincidence of value solutions for 

Vi
j, xi

j, si
j, and ri from the various, nxn, problems.  

Multipliers are specific to each particular programme — and therefore 

they appeared indexed by (.)i
j.  

With pure strategies, (3.27) occurs at n-1 problems of each individual 
i. Then, it implies, with (3.25): 

(3.41) 
δ−

j
i i

i

u (x )
1

 - (di
j + 

δ
−
i

n 1
 

=
≠

∑
n

k 1
k j

δ−

k
i i

i

u (x )
1

) = (ηs)i
j, if s≠i,j, s,i,j 

=1,2,….,n 

Likewise, (3.29) becomes: 

(3.42) 
δ−

i
i i

i

u (x )
1

 - (di + 
δ
−
i

n 1
 

=
≠

∑
n

k 1
k i

δ−

k
i i

i

u (x )
1

) = (η)i
i  

Due to the structure of the equations, the system remains 
indeterminate. So one could expect that players affect each other’s 
multipliers to their own benefit and to the extent of their own ability 
within the game’s protocol. Also, even if condition (3.41) would 
normally be redundant, it should be observed — with non-negative 
multipliers in an optimum. One can assume that player i is going to 

force (η)i
i up — maximising his share, xi

i, according to condition (3.42) 

-, the multiplier associated with ri; and/or (ηs)l
i’s, l,s≠i, l =1,2,…,n, to 

a minimum within its allowable range — i.e., i will press (ηs)l
i — the 

multipliers associated to the sl
m’s at round i, minimising xl

i (for given 

policies of other players) - in all other player’s, l, problem i to zero. 

That is to say, decreases all others’ shares in xi — relative to his — but 
guaranteeing condition (3.41) to be observed for all other players 
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within the allowable range, i.e., non-negative (ηs)l
i’s

7
 - that measure 

the incremental welfare effect for player l at round i of his acquiescence 

ability at later settlements. Notice that forcing (ηs)l
i to zero in other 

players’ problems implies (η)i
i being maximised and those conditions 

per se provide a corner that assures an interior equilibrium solution. 

Then, (1.1) and: 

(3.43) 
δ−

j
i i

i

u (x )
1

 = di
j + 

δ
−
i

n 1
 

=
≠

∑
n

k 1
k j

δ−

k
i i

i

u (x )
1

, j≠i, i,j =1,2,….,n 

provide a full solution to the game. 

With mixed strategies, the indeterminacy prevails. With the reasoning 

applied to (ηs)i
j replicated to the current problem, we conclude that an 

(semi-)internal solution follows: 

(3.44) 
δ−

j
i i

i

u (x )
1

 = di
j + 

δ
−
i

n 1
 

=
≠

∑
n

k
i

k 1
k j

V  j≠i, i,j =1,2,….,n 

(3.45) Vi
i = 

δ−

i
i i

i

u (x )
1

 = di + 
δ
−
i

n 1
 

=
≠

∑
n

k
i

k 1
k i

V , i =1,2,….,n 

With (3.34) and (1.1) — or the equivalent restriction from all the 

problems -, equilibrium values for xi
j, Vi

j, and ri are obtainable. 

A solution can then be obtained with also the other definitions — 
exhibiting the properties stated in Martins (2006). 

As long as (η)i
i is (can be) positive (di is very small compared to the n 

alternative equilibrium shares for player i) in pure strategies, a better 
solution should be attainable - pure strategies should always 
outperform mixed ones. 

4 SIMULTANEOUS GAMES 

                                                 
7 Required by Khun-Tucker conditions for a maximum. 
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4.1 The Player’s Problem 

Assume an n-persons synchronised offers game.  

ri is the probability with which player i makes an offer at each round 

of negotiations, (1 - ri) the one with which he decides not to. One and 

only one offer is going to be heard; j’s offer will be the one considered 
iff he makes an offer but not the other players, which occurs with 
probability: 

(4.1) rj 
=
≠

−∏
n

k
k 1
k j

(1 r )  

A — and only one - vector xj is, thus either going to be accepted 

unanimously, generating pay-off 
δ−

j
i i

i

u (x )
1

 for each player i; or rejected 

with the game reinitiating next period with a delay involving losses di
j 

(that eventually differ according to the effectively offering, rejected, 

party) for player i — which therefore gets then pay-off di
j + δi Vi, 

where Vi is the value of the game for player i.  

If no offer arises, which occurs with probability 
=

−∏
n

k
k 1

(1 r )  at each 

round, i gets payoff di + δi Vi — he obtains di in the period and 

bargaining re-initiates next period.  

If more than one player make offers, the game re-starts with no delay — 
each player maintaining his expectations, Vi. 

Each player i will solve the problem: 

(4.2)  

− +

1 2 n
i i i

i 1 i n
1 i 1 i 1 n
i i i i

V ,...,V ,...,V ;
r ; x ,...,x ,...,x ;
s ,...,s ,s ,...,s

Max  Vi s.t.:  
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(4.3) Vl = 
=

∑
n

m
m 1

r
=
≠

−∏
n

k
k 1
k m

(1 r )  [
=
≠

∏
n

m
k

k 1
k m

s  
δ−

m
l l

l

u (x )
1

 + (1 - 
=
≠

∏
n

m
k

k 1
k m

s ) (dl
m + 

δl Vl)] + 
=

−∏
n

k
k 1

(1 r )  (dl + δl Vl) + [1 - 
=

∑
n

m
m 1

r
=
≠

−∏
n

k
k 1
k m

(1 r )  - 
=

−∏
n

k
k 1

(1 r ) ] 

Vl, l = 1,2,...,n 

 
=
∑
n

i
l

l 1
x  = 1  

 xl
i ≥ 0, l = 1,2,...,n;  

 0 ≤ ri ≤ 1; 0 ≤ si
m ≤  1, m≠i, m = 1,2,...,n 

 Given rm, m≠i, m = 1,2,…,n;  

 xl
m, m≠i, l,m = 1,2,…,n;  

 sl
m, l≠i,m, l,m = 1,2,…,n. 

Equation (4.3) can be simplified to: 

(4.4) Vl = {
=

∑
n

m
m 1

r
=
≠

−∏
n

k
k 1
k m

(1 r )  [
=
≠

∏
n

m
k

k 1
k m

s  
δ−

m
l l

l

u (x )
1

 + (1 - 
=
≠

∏
n

m
k

k 1
k m

s ) dl
m] 

+ 
=

−∏
n

k
k 1

(1 r )  dl} / {
=

∑
n

m
m 1

r
=
≠

−∏
n

k
k 1
k m

(1 r )  [1 - δl (1 - 
=
≠

∏
n

m
k

k 1
k m

s )] + (1 - δl) 

=
−∏

n

k
k 1

(1 r )}, l = 1,2,...,n 

4.2 First Order Conditions 

Player i is going to face the Lagrangean: 
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(4.5)  

μ μ μ
λ
η η η η η

− +

− +

1 i n
i i i

i 1 i n
1 i 1 i 1 n
i i i i

1 i i i n i
i

1 i 1 i 1 n
i i i i i

V ,...,V ,...,V ;
r ; x ,...,x ,...,x ;
s ,...,s ,s ,...,s ;
( ) ,...,( ) ,...,( ) ;
( ) ;
( ) ,...,( ) ,( ) ,...,( ) ; ( )

Max   

Li = Vi + 
=
∑
n

l 1
 (μl)i (- Vl {

=
∑
n

m
m 1

r
=
≠

−∏
n

k
k 1
k m

(1 r )  [1 - δl (1 - 
=
≠

∏
n

m
k

k 1
k m

s )] + 

(1 - δl) 
=

−∏
n

k
k 1

(1 r )} + {
=

∑
n

m
m 1

r
=
≠

−∏
n

k
k 1
k m

(1 r )  [
=
≠

∏
n

m
k

k 1
k m

s  
δ−

m
l l

l

u (x )
1

 + (1 - 

=
≠

∏
n

m
k

k 1
k m

s ) dl
m] + 

=
−∏

n

k
k 1

(1 r )  dl}) + (λ)i (1 - 
=
∑
n

l 1
xl

i) + (η)i (1 - ri) + 

=
≠

∑
n

m 1
m i

(ηm)i (1 - si
m) 

 xl
i ≥ 0, l = 1,2,...,n;  

 (λ)i ≥ 0; (μl)i ≥ 0, l = 1,2,...,n 

 (η)i (1 - ri) = 0, ri ≥ 0, (η)i ≥ 0; 

 (ηm)i (1 - si
m) = 0, si

m ≥ 0, (ηm)i ≥ 0, m≠i, m = 1,2,...,n 

Then for optimal solutions with positive values of xi
j, si

j and ri we 

have: 

(4.6)  
∂
∂

i

i

L
V

 = 1 - (μi)i {
=

∑
n

m
m 1

r
=
≠

−∏
n

k
k 1
k m

(1 r )  [1 - δi (1 -
=
≠

∏
n

m
k

k 1
k m

s )] + (1 - 

δi)
=

−∏
n

k
k 1

(1 r )} = 0  
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(4.7)  
∂
∂

i

r

L
V

 = - (μr)i {
=

∑
n

m
m 1

r
=
≠

−∏
n

k
k 1
k m

(1 r )  [1 - δr (1 -
=
≠

∏
n

m
k

k 1
k m

s )] + (1 - δr)

=
−∏

n

k
k 1

(1 r )} = 0, r≠i, r = 1,2,...,n 

(4.8)  
∂
∂

i
i
r

L
x

 = (μr)i ri 
=
≠

−∏
n

k
k 1
k i

(1 r )  
=
≠

∏
n

i
k

k 1
k i

s  
δ−

i
r r

r

u '(x )
1

 - (λ)i = 0, r = 1,2,…,n 

(4.9)  
∂
∂

i
s
i

L
s

 = 
=
∑
n

l 1
 (μl)i [ - Vl δl rs 

=
≠

−∏
n

k
k 1
k s

(1 r ) 
=
≠

∏
n

s
k

k 1
k s

s  + rs 
=
≠

−∏
n

k
k 1
k s

(1 r )  

=
≠

∏
n

s
k

k 1
k s

s  (
δ−

s
l l

l

u (x )
1

 - dl
s) ] / si

s - (ηs)i = 0, s≠i, s = 1,2,…,n 

(4.10) 
∂
∂

i

i

L
r

 = 
=
∑
n

l 1
 (μl)i (- Vl {

=
≠

−∏
n

k
k 1
k i

(1 r ) [1 - δl (1 - 
=
≠

∏
n

i
k

k 1
k i

s )] - 
=
≠

∑
n

m
m 1
m i

r

=
≠
≠

−∏
n

k
k 1
k m
k i

(1 r )  [1 - δl (1 - 
=
≠

∏
n

m
k

k 1
k m

s )] - (1 - δl) 
=
≠

−∏
n

k
k 1
k i

(1 r )} + {
=
≠

−∏
n

k
k 1
k i

(1 r ) [

=
≠

∏
n

i
k

k 1
k i

s  
δ−

i
l l

l

u (x )
1

 + (1 - 
=
≠

∏
n

i
k

k 1
k i

s ) dl
i] - 

=
≠

∑
n

m
m 1
m i

r
=
≠
≠

−∏
n

k
k 1
k m
k i

(1 r )  [
=
≠

∏
n

m
k

k 1
k m

s  
δ−

m
l l

l

u (x )
1

 

+ (1 - 
=
≠

∏
n

m
k

k 1
k m

s ) dl
m] - 

=
≠

−∏
n

k
k 1
k i

(1 r ) dl}) - (η)i = 0  

(4.11) 
μ

∂
∂

i

l i

L
( )

 = 0, l = 1,2,...,n 

(4.12) 
λ

∂
∂

i

i

L
( )

 = 0, m = 1,2,...,n 

Due to (4.7), optimal solutions will imply for each i, either of the two 
factors of: 
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(4.13) (μr)i {
=

∑
n

m
m 1

r
=
≠

−∏
n

k
k 1
k m

(1 r )  [1 - δr (1 -
=
≠

∏
n

m
k

k 1
k m

s )] + (1 - δr)

=
−∏

n

k
k 1

(1 r )} = 0, r≠i, r = 1,2,…,n 

will be zero. 

For interior solutions of si
j and ri, the system would be completed with 

(ηm)i = 0, m≠i, m = 1,2,...,n, and (η)i = 0. 

Mixed strategies with respect to ri, but pure ones with respect to si
j 

(with acceptance) si
j = 1, j≠i, j = 1,2,...,n, would add to (4.6) to 

(4.12), (η)i = 0: 

(4.14)  1 = (μi)i [
=

∑
n

m
m 1

r
=
≠

−∏
n

k
k 1
k m

(1 r )  + (1 - δi)
=

−∏
n

k
k 1

(1 r ) ]  

(4.15)  (μr)i [
=

∑
n

m
m 1

r
=
≠

−∏
n

k
k 1
k m

(1 r )  + (1 - δr) 
=

−∏
n

k
k 1

(1 r ) ] = 0, (μr)i = 

0, r≠i, r = 1,2,…,n 

because the second factor must be positive. Then: 

(4.16)  
∂
∂

i
s
i

L
s

 = 
=
∑
n

l 1
 (μl)i [ - Vl δl rs 

=
≠

−∏
n

k
k 1
k s

(1 r ) + rs 
=
≠

−∏
n

k
k 1
k s

(1 r ) (

δ−

s
l l

l

u (x )
1

 - dl
s) ] - (ηs)i = 0, s≠i, s = 1,2,…,n 
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(4.17)  
∂
∂

i

i

L
r

 = - Vi [
=
≠

−∏
n

k
k 1
k i

(1 r ) - 
=
≠

∑
n

m
m 1
m i

r
=
≠
≠

−∏
n

k
k 1
k m
k i

(1 r )  - (1 - δi) 

=
≠

−∏
n

k
k 1
k i

(1 r ) ] + 
=
≠

−∏
n

k
k 1
k i

(1 r )
δ−

i
i i

i

u (x )
1

 - 
=
≠

∑
n

m
m 1
m i

r
=
≠
≠

−∏
n

k
k 1
k m
k i

(1 r )  
δ−

m
i i

i

u (x )
1

 - 

=
≠

−∏
n

k
k 1
k i

(1 r ) di = 0, and 

(4.18)  Vl = [
=

∑
n

m
m 1

r
=
≠

−∏
n

k
k 1
k m

(1 r )  
δ−

m
l l

l

u (x )
1

 + 
=

−∏
n

k
k 1

(1 r )  dl] / [
=

∑
n

m
m 1

r

=
≠

−∏
n

k
k 1
k m

(1 r )  + (1 - δl) 
=

−∏
n

k
k 1

(1 r ) ], l = 1,2,…,n 

From (4.16) and (4.14): 

(4.19)  rs 
=
≠

−∏
n

k
k 1
k s

(1 r ) [ - Vi δi + 
δ−

s
i i

i

u (x )
1

 - di
s ] = (ηs)i [

=
∑
n

m
m 1

r

=
≠

−∏
n

k
k 1
k m

(1 r )  + (1 - δi)
=

−∏
n

k
k 1

(1 r ) ], s≠i, s = 1,2,…,n 

Departing from (4.17): 

(4.20)  Vi [
=
≠

−∏
n

k
k 1
k i

(1 r )  - 
=
≠

∑
n

m
m 1
m i

r
=
≠
≠

−∏
n

k
k 1
k m
k i

(1 r )  - (1 - δi) 
=
≠

−∏
n

k
k 1
k i

(1 r ) ] = 

=
≠

−∏
n

k
k 1
k i

(1 r )
δ−

i
i i

i

u (x )
1

 - 
=
≠

∑
n

m
m 1
m i

r
=
≠
≠

−∏
n

k
k 1
k m
k i

(1 r )  
δ−

m
i i

i

u (x )
1

 - 
=
≠

−∏
n

k
k 1
k i

(1 r )  di  

Divided by 
=
≠

−∏
n

k
k 1
k i

(1 r ) : 
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(4.21)  Vi (δi - 
=
≠

−∑
n

m

mm 1
m i

r
1 r

) = 
δ−

i
i i

i

u (x )
1

 - 
=
≠

−∑
n

m

mm 1
m i

r
1 r

 
δ−

m
i i

i

u (x )
1

 - di  

with (4.18) for i divided by 
=

−∏
n

k
k 1

(1 r ) : 

(4.22)  Vi (
= −∑
n

m

mm 1

r
1 r

 + 1 - δi) = 
= −∑
n

m

mm 1

r
1 r

 
δ−

m
i i

i

u (x )
1

 + di, i = 

1,2,…,n 

Subtracting both sides of (4.21) from those of (4.22): 

(4.23)  Vi ( −
i

i

r
1 r

 + 1) = (
−
i

i

r
1 r

 + 1) 
δ−

i
i i

i

u (x )
1

  

and therefore 

(4.24)  Vi = 
δ−

i
i i

i

u (x )
1

  

4.3 Equilibrium 

A Nash equilibrium will involve the coincidence of value solutions for 

Vi, xi
j, si

j, and ri from the various, n, problems.  

Multipliers are specific to each particular programme — and therefore 
they appeared indexed by (.)i. As before, we sort to the conclusion that 

(ηs)i will be pressed to 0. Then (4.19) implies: 

(4.25)  
δ−

s
i i

i

u (x )
1

 = di
s + δi Vi, s≠i, i,s = 1,2,…,n 

As (4.24) requires: 

(4.26)  Vi = 
δ−

i
i i

i

u (x )
1

, i = 1,2,…,n 

With (1.1) — or the equivalent from all the problems - a solution for 

the xi
j’s — and therefore the Vi’s - can be obtained independently from:  
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(4.27)  
δ−

m
i i

i

u (x )
1

 = di
m + δi δ−

i
i i

i

u (x )
1

, m≠i, i,m = 1,2,…,n 

A solution for the rj’s can then be retrieved from (4.21) with the new 

equalities: 

(4.28) 
δ−

i
i i

i

u (x )
1

(δi - 
=
≠

−∑
n

m

mm 1
m i

r
1 r

) = 
δ−

i
i i

i

u (x )
1

 - 
=
≠

−∑
n

m

mm 1
m i

r
1 r

 [di
m + 

δ−

i
i i

i

u (x )
1

 

δi] - di, i = 1,2,…,n, or 

(4.29)  ui(xi
i) - di = 

=
≠

−∑
n

m

mm 1
m i

r
1 r

 [di
m - ui(xi

i)], i = 1,2,…,n 

With xi
i’s, rm’s can be inferred from the last equation system — see 

Martins (2006). 

5 CONCLUSIONS 

It was shown how different protocols of the bargaining over the 
distribution of an exogenously fixed asset can be mathematically 
programmed. On the one hand, the individuals’ problems, were 
adequately stated, as well as insufficiency of FOC to originate a 
solution. In alternate offers, the indeterminacy remained even with the 
introduction of intertemporal optimisation restrictions. On the other, 
additional conditions qualifying the known solutions were introduced 
and rationalised.  

One concluded that equilibrium determination in splitting games — at 
least in those inspected - can be adequately interpreted as the result of 
each individual’s choice, when he is deciding the own proposition, of 
the corner - guaranteeing non-negative multipliers of the acceptance 
probabilities of other players also towards other players’ offers - that is 
most advantageous to him over the optimal set provided by the 
standard FOC’s. In those games, such rule generated the possibility of 
a unique interior solution. 
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